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We consider the paradigm of an overdamped Brownian particle in a potential well, which is modulated
through an external protocol, in the presence of stochastic resetting. Thus, in addition to the short range
diffusive motion, the particle also experiences intermittent long jumps that reset the particle back at a
preferred location. Due to the modulation of the trap, work is done on the system and we investigate the
statistical properties of the work fluctuations. We find that the distribution function of the work typically, in
asymptotic times, converges to a universal Gaussian form for any protocol as long as that is also renewed
after each resetting event. When observed for a finite time, we show that the system does not generically
obey the Jarzynski equality that connects the finite time work fluctuations to the difference in free energy.
Nonetheless, we identify herein a restricted set of protocols which embraces the relation. In stark contrast,
the Jarzynski equality is always fulfilled when the protocols continue to evolve without being reset. We
present a set of exactly solvable models, demonstrate the validation of our theory and carry out numerical
simulations to illustrate these findings. Finally, we have pointed out possible realistic implementations for
resetting in experiments using the so-called engineered swift equilibration.
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Introduction.—Stochastic thermodynamics is a corner-
stone in nonequilibrium statistical physics [1–5].
Microscopic systems satisfy stochastic laws of motion
governed by force fields and thermal fluctuations that arise
due to the surrounding. The subject then teaches us that
thermodynamic observables such as work, heat, entropy
production etc. measured along the stochastic trajectories
taken from ensembles of such dynamics will fluctuate too.
Understanding the distribution and the statistical properties
of these fluctuations is of great interest since they hold a
treasure trove of information about microscopic systems
and how they respond to external perturbations. Indeed
there has been a myriad of studies to understand e.g.,
nonequilibrium dynamics of biopolymers [6,7], colloidal
particles [8–14], efficiency of molecular biomotors [15,16]
and microscopic engines [17], heat conduction [18,19],
electronic transport in quantum systems [20], trapped-ion
systems [21], and many more [22]. Although we observe
such diverse small systems with no apparent similarity, it is
remarkable to find that there exist some universal relations
which are shared in common. One of the most celebrated
ones is perhaps the Jarzynski equality (JE) that relates the
nonequilibrium fluctuations of the work to the equilibrium
free energy difference [23–25]. Universalities of such kind
have always been considered as an important feature in
physical sciences and in this Letter we seek out for
thermodynamic invariant principles in stochastic resetting
systems [26].

Dynamics with stochastic reset has drawn a lot of
attention recently because of its rich nonequilibrium
properties [26–41] and its broad applicability in first
passage processes [41–51]. Nevertheless, thermodynamical
perspective of resetting systems has been largely over-
looked so far. It was only recently when first and second
laws of thermodynamics were interpreted by identifying the
contributions to the total entropy production [52], and
furthermore it was shown to satisfy a universal integral
fluctuation relation [53]. While these first studies focused
exclusively on the entropy production, efforts are yet to be
made to understand other response functions. Moreover,
not much is known about the distribution of these observ-
ables. In particular, one important observable is the work
function that is produced due to external perturbations to
the system. Work statistics encode important features of an
out-of-equilibrium thermodynamic process, but its compu-
tation is usually quite daunting. Here, we set out to
characterize work fluctuations in a stochastic system that
is subjected to resetting. Our detailed analysis to this
account then reveals the emergence of robust universal
pattern in work fluctuations: first, resetting renders work
fluctuations Gaussian independent of the nature of the
external perturbation that produces it. Second, work fluc-
tuations are found to obey the JE under certain conditions
which we identify through this comprehensive study.
General theory.—For the sake of generality, we put

forward our results in the paradigmatic framework of
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a one-dimensional overdamped Brownian particle in a
potential U½x; λðtÞ�, which is modulated externally through
the protocol λðtÞ. Motion of such a particle is governed by
the Langevin equation of the form

_xðtÞ ¼ −γ−1∂xU½x; λðtÞ� þ
ffiffiffiffiffiffiffi
2D

p
ηðtÞ; ð1Þ

where γ and D are the friction and diffusion coefficients,
respectively, that satisfy the fluctuation-dissipation relation,
i.e., Dγ ¼ kBT, with kB being the Boltzmann constant and
T being the temperature of the medium. We assume
hηðtÞi ¼ 0 and hηðtÞηðt0Þi ¼ δðt − t0Þ. Moreover, let us
consider that the position of the particle at t ¼ 0 is
distributed according to the probability density function
(PDF) piniðx0Þ. At random times taken from an exponential
distribution fðtÞ ¼ re−rt, the particle in motion is stopped
and teleported to the initial configuration. A schematic of
our model system is depicted in Fig. 1.
The external modulation of the potential performs work

on the system, which can be defined as [23]

W ¼ 1

kBT

Z
t

0

dt0
∂U½xðt0Þ; λðt0Þ�

∂λ
dλðt0Þ
dt0

; ð2Þ

measured in units of kBT. In what follows, we will set
kBT ¼ D ¼ 1 without any loss of generality.
Since the reset process is instantaneous, we will assume

that no work was done during this course (a finite resetting
work will be discussed later). In order to quantify the work
fluctuations, it is convenient to first define the moment
generating function (MGF) namely

Hrðk; tÞ≡
Z

∞

−∞
dWe−kWPrðW; tÞ; ð3Þ

where PrðW; tÞ is the PDF of the work at time t, averaged
over the initial distribution piniðx0Þ and the underlying
dynamics with stochastic resetting. To delve deeper, we
make use of the renewal structure in resetting dynamics to
construct a relation that connects the MGF for r > 0 to that
of r ¼ 0 for any initial and subsequent resetting positions

H̃rðk; sÞ ¼
H̃0ðk; sþ rÞ

1 − rH̃0ðk; sþ rÞ ; ð4Þ

where H̃rðk; sÞ ¼
R
∞
0 dt e−stHrðk; tÞ and the subscript 0

indicates the observables with r ¼ 0. We have added a
proof of Eq. (4) in the Supplemental Material [54], but it is
imperative to stress the following points here. Note that
Eq. (4) holds for any initial condition and naturally adheres
to a fixed initial condition which was derived in [55,56], but
in the absence of any protocol λðtÞ. In the presence of
protocol, one needs to be meticulous since the structure of
this equation relies on the fact that λðtÞ is also renewed after
each resetting. As we will see later, Eq. (4) does not hold
when the protocol is unaffected under resetting [54].

The MGF, given by Eq. (4), can be inverted to obtain the
full work statistics at a given time. But, we will show that it
suffices to know the first and second moment to predict the
universal behavior of the work fluctuations in the large
time limit. To this end, we first note that the nth moment of
W in Laplace space can be written as

R∞
0 dt e−sthWnðtÞir ¼

f∂n=½∂ð−kÞn�gH̃rðk; sÞjk→0, which satisfies a recursive-
renewal structure [54]

W̃n
r ðsÞ¼

sþ r
s

�
W̃n

0ðsþ rÞþ r
Xn

l¼1

�
n

l

�
W̃n−l

r ðsÞW̃l
0ðsþ rÞ

�
;

ð5Þ

where we have defined W̃n
r ðsÞ≡

R
∞
0 dte−sthWnðtÞir.

Equation (5) gives a simple recipe to compute all the
moments of W recursively from the knowledge of the
moments of the process without resetting.
Universal work fluctuations.—The infinite set of

moments given by Eq. (5) contains the same information
as that of the full distributions PrðW; tÞ. However, physical
intuition tells us that not all the moments contribute
significantly for a long time. To see this, we consider a
trajectory of time length t with multiple possible resetting
events. The total work done along this long trajectory can
then be decomposed into the sum of the partial works
produced in each time interval between the resetting events.
However, these intervals are statistically independent since
the entire configuration of the system (comprising the
particle and the trap) is renewed after each resetting event,
and hence there are no correlations between the intervals.
Therefore, for a long enough observation time t one would
expect an average ∼rt number of resetting events, and the

(a) (b)

(c) (d)

FIG. 1. Schematic of a Brownian particle confined in a
harmonic trap U½x; λðtÞ� ¼ κðtÞ½x − yðtÞ�2=2, where λðtÞ ¼
fyðtÞ; κðtÞg represents the set of time-dependent protocols which
are independently regulated. λ ¼ yðtÞ and λ ¼ κðtÞ indicate the
center of the trap (panel a) and the stiffness (panel b), respec-
tively. The resetting mechanism acts both on the particle and the
protocols as mentioned in the text. Here, we show the modulation
of the protocol when it is renewed after each resetting (panel c) or
remains unaltered (panel d).

PHYSICAL REVIEW LETTERS 124, 110608 (2020)

110608-2



total work WðtÞ can then be written as W ≈W1 þ
W2 þW3 þ � � � þW½rt�. Since the intervals are disjointed,
the Wis are also independent and identically distributed.
Moreover, if Wis are regular (with finite mean and
variance), one would expect that the distribution of W,
according to the central limit theorem, would converge to a
Gaussian irrespective of the nature of the potential and
choice of the external protocol

PrðW; tÞ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2WðtÞ

p exp

�
−
ðW − μtÞ2
2σ2WðtÞ

�
; ð6Þ

where the mean μt ≡ hWir and the variance σ2WðtÞ≡
hW2ir − hWi2r are computed from Eq. (5). In Fig. 2, we
demonstrate Eq. (6) in the set up of a 1D Brownian particle
confined in a harmonic trap U½x; λðtÞ� ¼ κðtÞ½x − yðtÞ�2=2,
where κðtÞ and yðtÞ represent the stiffness and center of the
trap respectively (see details of the simulation in the
Supplemental Material [54]).
Jarzynski equality—reset protocol.—The JE relates the

finite time work fluctuations to the equilibrium free energy
and here we ask whether such relations hold generically
in resetting systems. We consider the same setup as before
and assume that each resetting act renews both the particle
and the protocol. We further assume that the initial
condition is taken from an equilibrium distribution
piniðx0Þ ∝ exp f−U½x0; λð0Þ�g, which is an essential pre-
requisite for the JE. Employing Eq. (4) and substituting
k ¼ 1 there, we find a renewal expression for the average of
the exponentiated work which connects to the same
quantity with r ¼ 0 in the Laplace space [54]

Lt→s½he−Wir� ¼
Lt→sþr½he−Wi0�

1 − rLt→sþr½he−Wi0�
; ð7Þ

where L is the Laplace transform operator. Several com-
ments are in order now. The exponential average on the rhs
is along the trajectory without resetting and therefore must
satisfy the JE, i.e., he−W½0;t� i0 ¼ e−fF0½λðtÞ�−F0½λð0Þ�g, where
F0½λðtÞ� is the free energy of the underlying system (i.e.,
when the dynamics is not interrupted by resetting) corre-
sponding to the value of λ evaluated at time t. However, it is
evident that substituting this in Eq. (7) will not essentially
lead to e−ΔF0ðtÞ [where ΔF0ðtÞ ¼ F0½λðtÞ� − F0½λð0Þ� is the
free-energy difference] along the entire trajectory of length
t in the presence of resetting, i.e., JE will not be obeyed
generically for any arbitrary protocol. Nonetheless, we
identify the protocols which will indeed satisfy this con-
dition. This happens when the modulation of the protocol
renders a linear change in the free energy, i.e.,ΔF0ðtÞ ¼ αt.
The trivial scenario, i.e., ΔF0ðtÞ ¼ 0 is true under any
external perturbation which is of the following form:
U½x; yðtÞ� ¼ U½x − yðtÞ�. This could happen, e.g., when
we move the center of the trap yðtÞ according to some
specific schedule. On the other hand, the nontrivial linear
change in ΔF0ð≠ 0Þ occurs when, e.g., the stiffness κðtÞ is
varied exponentially as a function of time. Utilizing this
condition in Eq. (7), we obtain he−Wir ¼ e−ΔF0ðtÞ. In fact
the linear time dependence in ΔF0 is not only sufficient but
also remains as a necessary condition [54].
We now briefly summarize the numerical setups that are

used to verify these findings. We have simulated an
overdamped Brownian particle in a harmonic trap
U½x; λðtÞ� ¼ κðtÞ½x − yðtÞ�2=2 in the presence of resetting
(r ¼ 0.5), and measured e−W till time t ¼ 5. In Fig. 3(a),
we have shown the convergence of the statistical average
he−Wir as a function of realizations NR for the following
protocol modulations (i) moving the center of the trap with
yðtÞ ¼ 0.2t, (ii) changing stiffness with a power law κðtÞ ¼
κ0ð1þ 0.2tÞ−2, and (iii) an exponential law κðtÞ ¼ κ0e−0.2t.
As before, we have regulated one protocol at a time keeping
the others fixed. The horizontal lines shown in the panel
correspond to the theoretical prediction of e−ΔF0ðtÞ, which
takes the values 1.0, 2.0, and ∼1.65, respectively, for each
of the modulations. The exact computation has been
reserved to the Supplemental Material [54]. Note that
modulations (i) leaves the free energy invariant, and
(iii) imposes a linear change in ΔF0 whereas modulation
(ii) leads to a nonlinear evolution in ΔF0 [54]. Thus, it is
evident from Fig. 3(a) that the JE holds for modulations (i)
and (iii), but not for modulation (ii).
Jarzynski equality is invariant under nonreset

protocol.—The discussion so far focused on the case when
we reset both the protocol and the particle. In the following,
we relax this condition and assume that only the particle is
reset while the protocol keeps evolving in time. Moreover,

(a) (b)

FIG. 2. Numerical computation of the PDF of the rescaled work
z ¼ ðW − μtÞ=σWðtÞ performed on a Brownian particle in a
harmonic trap for the linear modulation of the trap center, i.e.,
yðtÞ¼ut (panel a) and the stiffness, i.e., κðtÞ ¼ κ0 þ vt (panel b),
respectively. Simulations are performed for fixed initial condition
(FIC): piniðx0Þ ¼ δðx0Þ (circle markers) and random initial
condition (RIC): piniðx0Þ¼peqðx0Þ∝expf−U½x0;λð0Þ�g (square
markers), respectively, for each of the above cases. Parameters for
panel (a): κ0 ¼ 1.5; u ¼ 0.2 for FIC and κ0 ¼ 0.5; u ¼ 0.5 for
RIC, respectively, where r ¼ 0.5 and t ¼ 10 are set identical for
both of these cases. Similarly, parameters for panel (b):
κ0 ¼ 0.5; v ¼ 0.002; y ¼ 0; r ¼ 5, and t ¼ 500 for both FIC
and RIC. Numerical simulations are corroborated with the
theoretical prediction (solid line in both cases) given by
PðzÞ ¼ e−z

2=2=
ffiffiffiffiffi
2π

p
, and we see an excellent Gaussian collapse.
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we consider that after each resetting event, position of the
particle is drawn from the equilibrium distribution
piniðx0Þ ∝ exp f−U½x0; λðtiÞ�g corresponding to λ mea-
sured at the times ti of resetting. In this way, the particle
is effectively equilibrated after each resetting event which is
essential for the JE to hold. This construction correlates the
intervals between resetting events: since the initial con-
figuration of a given interval depends on the time spent in
the previous one and hence renewal structure of Eq. (4) is
lost [54]. However, notice that (i) the particle is prepared at
the equilibrium state pini after each resetting event, and
(ii) consequently, the equality is satisfied in any interval
between two resetting events. Taking these two facts into
account, one can show that the equality holds along
the entire trajectory independent of the nature of the
protocol [54]

he−Wir ¼ e−ΔF0ðtÞ: ð8Þ

We numerically check Eq. (8) in Fig. 3(b) and show that
indeed JE is invariant under nonreset protocolmodulations.
Discussion.—Up to this point, we have strictly assumed

that resetting is an instantaneous process and thus neglected
any possible contributions coming from it to the total work
done. However, in real world taking one particle from
location A to Bwill require work and this contribution must
be taken into account. Another essential aspect of the Letter
is the imposed equilibrated condition upon each resetting
which may appear artificial from an experimental point of
view. To fill up these conceptual gaps, in this section, we
put forward an explicit proposal for practical implementa-
tion of resetting which accounts for both these issues.

To proceed further, recall that the unhindered process,
characterized by p0ðx; tÞ, satisfies the Fokker-Planck equa-
tion ∂tp0ðx;tÞ¼∂x½ð1=γÞU0½x;λðtÞ�p0ðx;tÞ�þD∂2

xp0ðx;tÞ.
Let us now focus on the first resetting event which occurs
at a time tr. Then the job of this engineered restart
mechanism would be to take the current distribution
p0ðx; trÞ in the resetting time tr and make a transformation
to reach an arbitrary target distribution pfðxÞ (which in our
case is the equilibrium density) in a fixed time Δr > 0.
There have been recent developments to design protocols,
namely engineered swift equilibration [57–60], that short-
cut the relaxation times between two target distributions
whose properties can be controlled in time. We will now
show how to choose the optimal protocol that renders the
average irreversible work during the resetting mechanism
minimum.
As a representative case, we will consider the Brownian

particle diffusing in a harmonic trap whose stiffness is
timely modulated, that is,Uðx; tÞ ¼ κðtÞx2=2. At time zero,
the particle is prepared in equilibrium with a zero-mean
Gaussian and standard deviation σð0Þ≡ σ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hx2ð0Þi

p

with κð0Þ ¼ κ0 which satisfies σ20 ¼ kBT=κ0 from the
equipartition theorem. Due to the nature of the potential,
position density remains to be zero-mean Gaussian at all
times, i.e., p0ðx; tÞ ¼ f½e−x2=2σ2ðtÞ�=½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2πσ2ðtÞ

p
�g, where

σðtÞ satisfies the following evolution equation: σðtÞ _σðtÞ ¼
−½κðtÞ=γ�σ2ðtÞ þD [54]. Upon first restart at time tr, the
particle returns from a position which is distributed
according to a Gaussian distribution with σðtrÞ [corre-
sponding to κðtrÞ]. The goal is then to design an optimal
protocol κðtÞ (tr < t < tr þ Δr), which drives the system
from σðtrÞ to σ0 in time Δr within the most efficient energy
consumption budget. The average work performed during
this interval (with reset protocol) over many such trajecto-
ries is given by

hWrpi ¼
1

2

Z
trþΔr

tr

dt σ2ðtÞ_κðtÞ ¼ W1 þ ΔFr þWirr; ð9Þ

where W1 ¼ 1
2
½σ20κð0Þ − σ2ðtrÞκðtrÞ�, and ΔFr ¼

− 1
2
kBT ln f½σ20�=½σ2ðtrÞ�g is the difference of free energy

between the equilibrium states characterized by the initial
and final variance [54]. Finally, the third term Wirr½ _σðtÞ� ¼
γ
R trþΔr
tr dt _σ2ðtÞ can be identified as the irreversible work of

the process which is always positive. Note thatW1 andΔFr
are determined given the initial and target states leaving the
dependence of the specific protocol and Δr only in Wirr.
The optimal profile σoptðtÞ that minimizesWirr½ _σðtÞ� can be
immediately obtained using variational calculus and this
reads [54]

σoptðtÞ ¼ σðtrÞ þ ðt − trÞ
σ0 − σðtrÞ

Δr
: ð10Þ

(a) (b)

FIG. 3. Numerical verification of the JE: we have demonstrated
convergence of he−Wir as a function of the number of realizations
NR. We have used three different types of protocol modulations
as mentioned in the main text. The analytical values of e−ΔF0 ,
shown by the horizontal lines [dotted for (i) moving trap, dashed
and solid for the (ii) power law and (iii) exponential stiffness,
respectively, in both panels], are plotted against numerical points
for he−Wir (shown by the triangles, squares, and circles, respec-
tively). (a) Reset protocol. JE is seen to hold for protocols (i) and
(iii) but not (ii). Parameters: κ0 ¼ 1.5 and κ0 ¼ 0.5 respectively
for the center and stiffness modulation. (b) Nonreset protocol. JE
holds for any protocols. Parameters: κ0 ¼ 1 and κ0 ¼ 0.35,
respectively, for the center and stiffness modulation. In all the
simulations, we have set r ¼ 0.5 and t ¼ 5.
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Substituting this into the evolution equation for σðtÞ,
one immediately finds the corresponding profile for the
optimal protocol κoptðtÞ. Interestingly, κoptðtÞ develops
finite discontinuities at the threshold times, i.e., κðtrÞ ≠
limt→trκoptðtÞ and κðtr þ ΔrÞ ¼ κð0Þ ≠ limt→trþΔr

κoptðtÞ, as
was also found in other studies [59–61]. Implementing
the protocol, we get the optimal irreversible work
Wirr

opt ¼ γf½σ0 − σðtrÞ�2=Δrg, which is exactly proportional
to Δ−1

r [54]. This ensures that a perfect instantaneous
resetting (i.e., the Δr → 0 limit) is not physically viable
(if a work indeed is accounted for the entire resetting
mechanism) since the energetic cost for each resetting jump
will be divergent. A similar analysis follows also for the
nonreset protocol [54].
Conclusions and outlook.—In summary, this Letter

discusses statistical properties of work fluctuations in a
stochastic resetting system. We find that the introduction of
resetting renders the work fluctuations Gaussian in the large
time for the reset protocols. We infer that this is due to the
renewal structure of the resetting process. Consequently,
our approach also predicts emergence of Gaussian fluctua-
tions for other thermodynamic observables such as dis-
sipated heat, power flux or entropy production. A detailed
analysis of this problem, however, remains to be seen.
Furthermore, we note that only the typical fluctuations
become Gaussian as a fallout of the central limit theorem.
On the other hand, it is only rational to believe that such
universality of the fluctuations will be lost while looking at
the tail behavior (atypical fluctuations) of the work dis-
tribution. An outstanding challenge would be to extend our
approach to capture such scenarios using large deviation
theory [62].
Our research also presents an extensive study on JE in

resetting systems and unravels different constraints on the
temporal behavior of the protocols to preserve the JE.
We have also put forward a neat feasible experimental
pathway to implement real resets inspired by the recent
developments on the edge between stochastic thermody-
namics and control theory. We would like to stress the fact
that the JE still prevails if the observable under study is
the work W [Eq. (2)] performed only between the reset
events, while the total work contribution namely W þWtot

rp

(the latter averaged over all the resetting events) would lead
to nongeneric results specific to resetting mechanism.
Finally, we leave a note that our central results, although
illustrated here under a one-dimensional framework, are
also valid in higher dimensions. Furthermore, recent
experiments allow us to explore one-dimensional systems
with a high precision and accurate measurement (see,
e.g., [13,17,57,63,65–67]). Naturally, our study opens up
a new research avenue in stochastic thermodynamics of
resetting with a great appeal to the experimental demon-
stration of the work fluctuation theorems in the resetting
controlled biophysical [64] and single molecular systems
using optical traps [57,63,65–67].
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