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We give rigorous analytical results on the temporal behavior of two-point correlation functions—also
known as dynamical response functions or Green’s functions—in closed many-body quantum systems.
We show that in a large class of translation-invariant models the correlation functions factorize at late times
hAðtÞBiβ → hAiβhBiβ, thus proving that dissipation emerges out of the unitary dynamics of the system.
We also show that for systems with a generic spectrum the fluctuations around this late-time value are
bounded by the purity of the thermal ensemble, which generally decays exponentially with system size. For
autocorrelation functions we provide an upper bound on the timescale at which they reach the factorized
late time value. Remarkably, this bound is only a function of local expectation values and does not increase
with system size. We give numerical examples that show that this bound is a good estimate in nonintegrable
models, and argue that the timescale that appears can be understood in terms of an emergent fluctuation-
dissipation theorem. Our study extends to further classes of two point functions such as the symmetrized
ones and the Kubo function that appears in linear response theory, for which we give analogous results.
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Two-point correlation functions—also known as
dynamical response functions or Green’s functions—are
the central object of the theory of linear response [1], and
appear in the characterization of a wide range of non-
equilibrium and statistical phenomena in the study of
quantum many-body systems and condensed matter phys-
ics [2]. This includes different types of scattering and
spectroscopy experiments [3], quantum transport [4,5], and
fluctuation-dissipation relations [6–8]. They have also
appeared in the characterization of topological [9] and
crystalline ordering [10], of quantum-chaotic systems
[11,12], and of different notions of ergodicity in quantum
and classical systems [13,14].
Here we study the time evolution of such correlation

functions in isolated systems evolving under unitary dynam-
ics. More precisely, we focus on functions of the form

CABðtÞ≡ hAðtÞBiβ ¼ Tr½ρAðtÞB�; ð1Þ

where the evolution is generated by a time-independent
Hamiltonian H, ρ≡ e−βH=Zβ is a thermal state at inverse
temperature β with partition function Zβ, and AðtÞ ¼
eiHtAe−iHt is the evolved observable in the Heisenberg
picture. Both A and B are usually taken to be either local
(such as a single-site spin) or extensive operators (such as a
global current or magnetization).

Two-point correlation functions have been widely stud-
ied before, mostly through numerical methods such as
exact diagonalization [15], quantum Monte Carlo [16], and
tensor networks [17–23], and analytically for specific
models, e.g., [24–29]. Also, a number of experimental
schemes to measure it directly have been proposed [30–34],
which manage to circumvent the obstacle of having to
measure two noncommuting observables in a single sys-
tem. Here, we give rigorous analytical results on their
dynamical behavior with as few assumptions on the
Hamiltonian as possible. Our results apply to most trans-
lation-invariant nonintegrable Hamiltonians, in which the
degeneracy of the energy spectrum is small.
First, for arbitrary local observables A and B we prove

that, for late times, the following signature of dissipation
occurs in a large class of translation-invariant models

hAðtÞBiβ ⟶
t→∞ hAiβhBiβ: ð2Þ

Moreover, we show that the fluctuations around the late-
time value are in fact bounded by the effective dimension
d−1eff ≡ Trðρ2Þ of the ensemble, which decays quickly with
system size.
For the case of autocorrelation functions, when A ¼ B,

we also derive an upper bound on the timescale at which the
factorization of Eq. (2) happens, which, remarkably, is
independent of the size of the system. We provide numeri-
cal evidence showing that the bound is in fact a good
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estimate even for moderate system sizes, and becomes
tighter as the size increases.
Our study can be extended to a large class of two-point

correlation functions. For instance, for symmetric correla-
tion functions CA

s ðtÞ≡ hAðtÞAiβ þ hAAðtÞiβ, we find that
evolution is dominated by a timescale which is at most of
order t2 ∼ fhA2iβ=h½A;H�½H;A�iβg. We argue that this can
be interpreted in terms of a fluctuation-dissipation theorem
that arises from the unitary dynamics of the system. Finally,
we consider the timescales of evolution of the Kubo
correlation function that appears in linear response theory
[1,7], which dictates the response of a system at equilib-
rium to a perturbation in its Hamiltonian.
Late-time behavior.—We now show the rigorous formu-

lation of the late-time factorization of two-point functions.
First, we need the following definition.
Definition 1. (Clustering of correlations). A state ρ on

an Euclidean lattice ZD has finite correlation length ξ > 0
if it holds that

max
X∈M;Y∈N

jTrðρX⊗YÞ−TrðρXÞTrðρYÞj
kXkkYk ≤e−½distðM;NÞ=ξ�; ð3Þ

where M, N are regions on the lattice separated by a
distance of at least distðM;NÞ, and X, Y are arbitrary
operators with support on each region.
This condition is generic of thermal states at finite

temperature away from a phase transition. It has been
proven at least for 1D systems [35] and arbitrary models
above a threshold temperature [36]. In order to prove
factorization at late times, we focus on systems on
states that show clustering of correlations, and whose
Hamiltonians are k local, i.e., which can be written as
H ¼ P

j hj, where hj couples at most k closest neighbors.
Given that evolution is unitary and the system is

finite-dimensional, limits such as limt→∞ CABðtÞ are not
well defined. Hence, we consider the late-time behavior
under infinite-time averages of the correlation functions
limT→∞

R
T
0 ðdt=TÞCABðtÞ. With these considerations, our

first main result is the following.
Theorem 1. Let H be a k-local, translation-invariant,

nondegenerate Hamiltonian on a D-dimensional Euclidean
lattice of N sites, and let ½ρ; H� ¼ 0 be an equilibrium
ensemble (such as a thermal state) of finite correlation
length ξ > 0. Let A, B be local observables with support on
at most OðNð1=Dþ1Þ−νÞ sites, with ν > 0. Then

lim
T→∞

Z
T

0

CABðtÞ dt
T

¼ TrðρAÞTrðρBÞ
þOðξð2D=Dþ1Þlog2ðNÞN−ð2=Dþ1ÞÞ: ð4Þ

This guarantees that all operators supported on a
region with size scaling like any function smaller than
OðNð1=Dþ1ÞÞ, satisfy the assumptions of the theorem. The

proof, found in the Supplemental Material [37], relies on a
weak form of the eigenstate thermalization hypothesis
(ETH) shown in [38], which is itself based on previous
works on large deviation theory for lattice models [39,40].
This shows that, in fact, any model obeying the weak ETH
and without too many degeneracies will display identical
factorization of correlation functions at long times [41].
Note that we assume that the energy spectrum is non-

degenerate, which is accurate for systems without non-
trivial symmetries or extensive number of conserved
quantities. In particular, nonintegrable systems usually
display Wigner-Dyson statistics in their fine-grained spec-
trum, which imply level repulsion [8].
This factorization of the correlation function can be

thought of as a signature of the emergence of dissipation
due to unitary dynamics, since the lack of correlations at
different times indicates the loss of information about an
initial perturbation of B at time t ¼ 0, as reflected in the
observable A at time t [1].
Fluctuations around late-time value.—For most times,

the two-point correlation function is in fact close to its late-
time average, with small fluctuations around the equilib-
rium value. In order to prove this, one needs the extra
assumption that the energy gaps are nondegenerate, which
is again reasonable in nonintegrable systems with con-
nected Hamiltonians [8,42], where it is generally expected
to hold as random perturbations are sufficient to lift
degeneracies in energy gaps [43].
Let us define CAB

∞ ¼ limT→∞
R
T
0 ðdt=TÞCABðtÞ, and the

average fluctuations around the late-time value as

σ2C ¼ lim
T→∞

Z
T

0

dt
T
ðCABðtÞ − CAB

∞ Þ2: ð5Þ

The following result puts an upper bound on average
fluctuations.
Theorem 2. Let H ¼ P

j Ejjjihjj be a Hamiltonian
with nondegenerate energy gaps, such that

Ej − Ek ¼ Em − El ⇔ j ¼ m; k ¼ l; ð6Þ
and let ½ρ; H� ¼ 0. It holds that

σ2C ≤ kAkkBkmax
j≠k

fjAkjBjkjgTrðρ2Þ; ð7Þ

where Akj, Bjk are matrix elements in the energy eigen-
basis, A ¼ P

jk Ajkjjihkj.
The proof can be found in the Supplemental Material

[37]. It follows the same steps as the main result in [44].
Here, we also find that the purity Trðρ2Þ of the equilibrium
ensemble plays a key role. For a microcanonical ensemble
Trðð1=dÞ2Þ ¼ 1=d, so the rhs of Eq. (7) is expected to
decay exponentially with system size in most situations of
interest. Also, notice that for a thermal state Trðρ2βÞ ≤ 1=Zβ.
Moreover, the ETH predicts that jAkjBjkj ∼ 1=d [45].
Timescales of equilibration.—Theorems 1 and 2 com-

bined imply that correlation functions of the form hAðtÞBiβ
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are, for most times t ∈ ½0;∞�, close to the uncorrelated
average hAiβhBiβ, for a wide class of translation-invariant
systems. It is expected that the timescale at which this
happens may depend on a number of factors, such as the
distance between A and B. If the operators are far apart on
the lattice the correlations are limited by the Lieb-Robinson
bound [46,47], and timescales associated with ballistic
(∝ N1=D) or diffusive (∝ N2=D) processes may play
a role. However, for the autocorrelation function CAðtÞ≡
hAðtÞAiβ, we can show that equilibration to the late-time
value occurs in a short timescale, independent of system
size. There may also be further effects at larger timescales,
such as the Thouless time [48,49], and for those effects our
result limits their relative size.
Let us define ρ ¼ P

j ρjjjjihjj, so that ρjj and Ajk are the
matrix elements of ρ and A in the energy basis. We can then
write

CAðtÞ
CAð0Þ ¼

X
jk

ρjjjAjkj2
CAð0Þ e−iðEj−EkÞt ≡X

α

vαe−iGαt; ð8Þ

where we denote each pair of levels fi; jg by a Greek index,
and the corresponding energy gaps by Gα ≡ Ej − Ek

(notice that both Ej − Ek and Ek − Ej appear in the
sum). The normalized distribution vα ≡ ½ρjjjAjkj2=CAð0Þ�
is central to our proofs, since it contains all the relevant
information about the state, observable and Hamiltonian,
and determines which frequencies contribute to the dynam-
ics of the autocorrelation function. Based on it, we define
the following functions.
Definition 2. Given a normalized distribution pα over

energy gaps Gα, we define ξpðxÞ as the maximum weight
that fits an interval of energy gaps with width x:

ξpðxÞ≡max
λ

X
α∶Gα∈½Gλ;Gλþx�

pα: ð9Þ

We also define

aðϵÞ≡ ξpðϵÞ
ϵ

σG; δðϵÞ≡ ξpðϵÞ; ð10Þ

where σG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

α pαG2
α − ðPα pαGαÞ2

p
is the standard

deviation of the distribution pα over the energy gaps Gα.
The important point behind these definitions is that, for a

sufficiently smooth and unimodal probability distribution,
one can find an ϵ small enough such that aðϵÞ ∼Oð1Þ and
δðϵÞ ≪ 1. In the following theorem, the relevant probability
distribution is given by vα. Our main result regarding
the timescales of correlation functions, proven in the
Supplemental Material [37], is:
Theorem 3. For any Hamiltonian H and state ρ such

that ½H; ρ� ¼ 0, and any observable A, the autocorrelation
function CAðtÞ ¼ Tr½ρAðtÞA� satisfies

1

T

Z
T

0

jCAðtÞ − CA
∞j2

½CAð0Þ�2 dt ≤ 3π

�
aðϵÞ
σG

1

T
þ δðϵÞ

�
ð11Þ

for any ϵ > 0. Here, aðϵÞ and δðϵÞ are as in Definition 2 for
the normalized distribution vα ≡ ½ρjjjAjkj2=CAð0Þ�, and σG
is given by

σ2G ¼ 1

CAð0ÞTrðρ½A;H�½H;A�Þ − Trðρ½H;A�AÞ2
½CAð0Þ�2 : ð12Þ

Theorem [3] provides an upper bound of Teq ≡
½3πaðϵÞ=σG� on the timescales under which autocorrelation
functions approach their steady state value. To see this note
that, if for a given T the rhs of Eq. (11) is small, CAðtÞmust
have spent a significant amount of time during the interval
½0; T� near the late-time value CA

∞.
The crucial point is that for distributions vα that are

uniformly spread over many values of the gaps Gα, one can
always find an ϵ such that δ ≪ 1. In that case, the right-
hand side of Eq. (11) becomes small on timescalesOðTeqÞ.
As discussed in [50] and in [37], if one further assumes
smooth unimodal distributions, typically one also finds that
a ∼Oð1Þ. In that case, the timescale is governed by 1=σG.
Given that σG is a combination of expectation values of
local observables, it does not scale with the system of the
system. In fact, a result of [51] shows that a timescale of
order 1=σG provides a lower bound to the timescale of
equilibration, which strongly suggests that our upper bound
is tight when the conditions of a ∼Oð1Þ and δ ≪ 1 hold.
As a prime example, for local operators in nonintegrable

lattice models, in which (as per the ETH) jAjkj are
uniformly distributed around a peak at zero energy gap
[52,53], one should be able to choose ϵ such that a ∼Oð1Þ
and δ ≪ 1. In Fig. 1 we numerically show that this is
indeed the case in a nonintegrable Ising model.
Theorem 3 does not make assumptions on the specifics

of the Hamiltonian, the observable or the state, making it
completely general. However, we do not expect the
correlation functions to equilibrate well in all cases, as
in some scenarios aðϵÞ and δðϵÞ will be large no matter
what value of ϵ is chosen, in which case the rhs of Eq. (11)
may not become small within reasonable timescales. This
can happen, for instance, in models with highly degenerate
energy spectrum. To illustrate this, in the Supplemental
Material [37] we compute these parameters in an integrable
model, where we see that the gap degeneracies of the model
negatively affect the quantities aðϵÞ and δðϵÞ, making the
estimated equilibration timescales longer.
Symmetric correlation functions.—The previous results

can be extended to other correlation functions, such as

CA
s ðtÞ≡ 1

2
TrðρfA; AðtÞgÞ ¼ CAðtÞ þ CAðtÞ�

2
: ð13Þ

Along the same lines of Theorem 3, in the Supplemental
Material [37] we prove the following.
Theorem 4. For any Hamiltonian H and state ρ such

that ½H; ρ� ¼ 0, and any observable A, the time correlation
function CA

s ðtÞ ¼ TrðρfA; AðtÞgÞ satisfies
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1

T

Z
T

0

jCA
s ðtÞ − CA

s;∞j2
½CA

s ð0Þ�2
dt ≤ 3π

�
aðϵÞ
σG

1

T
þ δðϵÞ

�
; ð14Þ

for any ϵ > 0.Here,aðϵÞ andδðϵÞ are as inDefinition2 for the
normalized distribution vsα ≡ ðρjj þ ρkk=2Þ½jAjkj2=CA

s ð0Þ�,
and

σ2G ¼ 1

CA
s ð0Þ

Trðρ½A0; H�½H;A0�Þ: ð15Þ

Thus an upper bound for the equilibration timescale is

Teq ¼
3πaðϵÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
CA
s ð0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Trðρ½A;H�½H;A�Þp ; ð16Þ

where again we expect that for small enough ϵ, aðϵÞ ∼
Oð1Þ and δ ≪ 1 for the same reasons as before. The
denominator in Teq can be seen as an “acceleration” of the
symmetric autocorrelation function. Equation (16) can in
fact be written as

Teq ¼
3πaðϵÞ

ffiffiffiffiffiffiffiffiffiffiffiffi
CA
s ð0Þ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j d2CA

s ðtÞ
dt2 j0j

q : ð17Þ

Such a timescale turns out to be similar to that of a short-
time analysis. A Taylor expansion gives

CA
s ðtÞ ¼ CA

s ð0Þ
�
1 −

1

2CA
s ð0Þ

d2CA
s ðtÞ

dt2

����
0

t2
�
þOðt3Þ: ð18Þ

For early times, the above expression decays on a timescale
τ ¼ ½ ffiffiffi

2
p

=3πaðϵÞ�Teq, identical to our upper bound Eq. (17)
up to a prefactor.
The timescale of Eq. (16) suggests an interpretation in

terms of an emergent fluctuation-dissipation theorem.
Consider (i) Teq to be the timescale of dissipation of
unitary dynamics, meaning that hAðtÞAiβ → hAiβhAiβ
occurs, and (ii) CA

s ð0Þ ¼ TrðρA2Þ as a measure of the
fluctuations of A. Then, Eq. (16) gives a proportionality
relation between the strength of the fluctuations and the
timescale of equilibration, in a similar spirit to what was
found in [54] using random matrix theory arguments.
Linear response and the Kubo correlation function.—As

a further application of our methods, we study the evolution
of a quantum system under a perturbation of its
Hamiltonian. Let the system start in a thermal state,
such that ρ ∝ e−βðHþλAÞ. Subsequently, the Hamiltonian
is slightly perturbed by λA, so that the evolved state
is ρt ¼ e−itHρeitH.
It was shown by Kubo [1] that, to leading order in λ, the

expectationvalue ofA satisfies Tr½ρAðtÞ� ¼ CKuboðtÞTrðρAÞ,
where for thermal initial states ρ the Kubo correlation
function can be written as

CKuboðtÞ ∝
X
j≠k

e−βEk − e−βEj

Ej − Ek
jAjkj2eitðEj−EkÞ: ð19Þ

Equilibration of Tr½ρAðtÞ� is then equivalent to equilibration
of the function CKuboðtÞ, for which we prove in the
Supplemental Material [37] that the following holds.
Theorem 5. For any Hamiltonian H, thermal state

ρ ∝ e−βðHþλAÞ, and any observable A, the Kubo correlation
function CKubo satisfies

1

T

Z
T

0

jCKuboðtÞ−CKubo;∞j2
CKuboð0Þ2

dt≤3π

�
aðϵÞ
σG

1

T
þδðϵÞ

�
; ð20Þ

for any ϵ>0. Here,aðϵÞ and δðϵÞ are as inDefinition 2 for the
normalized distribution wα≡½ðe−βEk−e−βEjÞ=ðEj−EkÞ�×
½jAjkj2=CKuboð0Þ�, and

σ2G ¼ 1

CKuboð0Þ
Trð½A; ρ�½A;H�Þ: ð21Þ

This again implies an upper bound Teq ¼ ½3πaðϵÞ=σG� on
the equilibration timescale ofCKubo, and therefore on the time
to return to thermal equilibrium after a perturbation of the
systemHamiltonian byA. The distributionwα plays the same
role as vα and vsα before. If wα is smoothly distributed and

FIG. 1. Plots of δðϵÞ (top) and aðϵÞ (bottom) for distribution
vα ≡ ½ρjjjAjkj2=CAð0Þ� in Theorem 3, obtained by exact diago-
nalization and a Monte Carlo approximation. The plots were
generated with 10 000 sampled frequency intervals. Small values
of δ imply equilibration occurs for long enough times, while the
value of a controls the prefactor in the equilibration timescale
Teq ≡ ½3πaðϵÞ=σG� derived from Eq. (11). For small ϵ one can
satisfy both δ ≪ 1 and a ∼Oð1Þ, and this becomes increasingly
so for larger system sizes.
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unimodal (which we expect for local observables in non-
integrable models) then a ∼Oð1Þ and δðϵÞ ≪ 1 holds [37].
Simulations.—We test Theorem 3 in a spin model

governed by the Hamiltonian

H¼
XL
j¼1

ðγσXj þλσZj ÞþJ
XL−1
j¼1

σZj σ
Z
jþ1þα

XL−2
j¼1

σZj σ
Z
jþ2; ð22Þ

where σZj and σXj are the Pauli spin operators along Z and X
directions for spin j, and we take open boundary con-
ditions. The field and interaction coefficients ðγ; λ; J; αÞ
characterize the model. We focus on a case corresponding
to a system satisfying ETH by choosing ðγ; λ; J; αÞ ¼
ð0.8; 0.5; 1; 1Þ [55], and study the autocorrelation functions
of the observable A ¼ σxL=2. For simplicity we set β ¼ 1 in
our numerics, though no significant changes were observed

for β ∈ ½0.1; 5�. Figure 1 depicts the functions aðϵÞ and δðϵÞ
that appear in Theorem 3, confirming that there exist
regions of ϵ such that δ ≪ 1, ensuring equilibration occurs,
and a ∼ 0.4. Importantly, this is increasingly the case as the
size of the system grows.
Figure 2 compares the two sides in bound (11), showing

that dynamics obtained from the upper bound differs from the
actual dynamics by roughly an order of magnitude. Thus, the
general,model-independent bounds obtained fromTheorem3
provide remarkably good estimates of the actual (simulated)
dynamics. Note that the estimate becomes increasingly better
as the size of the system increases. This discrepancy could,
however, be a finite-size effect, which is also suggested by the
lower boundobtained in [51].Details of the simulations canbe
found in the Supplemental Material [37].
Discussion.—We derived analytic results on the dynami-

cal behavior of two-point correlation functions in quantum
systems. These include conditions that imply that time-
correlation functions factorize for long times, as well as
easy-to-estimate upper bounds on the timescales under
which such process occurs which hold regardless of details
of the model under consideration. Remarkably, our numeri-
cal findings show that the derived upper bounds can
correctly estimate the actual dynamics of the system to
within an order of magnitude, and become increasingly
better estimates as the size of the system increases.
We used techniques previously applied in the context of

equilibration of quenched quantum systems [50,56,57], for
which finding rigorous estimates on the timescales is a
largely open problem [58–61]. This connection is not
surprising, specially considering that previous works
[6,62,63] have argued that in some situations one can
approximate the out of equilibrium dynamics with the
autocorrelation functions covered here.
Given the importance of time-correlation functions in

the analysis of a wide range of problems in many-body
physics—for instance, in transport phenomena—we antici-
pate that our results will be useful in the description of
closed system dynamics, whose study has surged in recent
times due to enormous experimental advances in settings
such as cold atoms or ion traps [64,65].
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