
 

Negativity of Quasiprobability Distributions as a Measure of Nonclassicality

Kok Chuan Tan ,1,2,* Seongjeon Choi ,1 and Hyunseok Jeong1,†
1Department of Physics and Astronomy, Seoul National University, Seoul 08826, Republic of Korea

2School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 639673, Republic of Singapore

(Received 27 August 2019; accepted 26 February 2020; published 19 March 2020)

We demonstrate that the negative volume of any s-parametrized quasiprobability, including the Glauber-
Sudashan P function, can be consistently defined and forms a continuous hierarchy of nonclassicality
measures that are linear optical monotones. These measures belong to an operational resource theory of
nonclassicality based on linear optical operations. The negativity of the Glauber-Sudashan P function, in
particular, can be shown to have an operational interpretation as the robustness of nonclassicality. We then
introduce an approximate linear optical monotone, and we show that this nonclassicality quantifier is
computable and is able to identify the nonclassicality of nearly all nonclassical states.
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Nonclassical states of light finduseful applications in tasks
such as quantummetrology [1,2], quantum teleportation [3],
quantumcryptography [4], quantumcommunication [5], and
quantum information processing [6]. Correspondingly, there
has been great interest in the characterization, verification,
and quantification of nonclassicality in quantum states
[7–21]. Due to the linearity of quantum mechanics, meas-
urement statistics from a nonclassical state may be repro-
duced by a classical state by appropriately modifying the
measurement [22]. For this reason, nonclassicality in light is
usually considered within the context of fixed measurement
operations, such as homodyne measurements that measure
quadrature variables of light. Such quadrature variables are
related to quasiprobability distribution functions: the neg-
ativity ofwhich is considered a nonclassicality indicator. The
operational formalism of quasiprobability distribution func-
tions has led to important results about the structure of
quantum theory [23], quantum computation [24–26], and
simulation of quantum optics [27,28].
It is typically considered that the most classical states of

a bosonic field are the coherent states [29]. Defined as the
eigenstates of the annihilation operator, ajαi ¼ αjαi, the
dynamics of coherent states in a quadratic potential closely
resemble that of a classical harmonic oscillator [30]. The
seminal works of Glauber [29] and Sudarshan [31] showed
that every quantum state of light may be written in the form
of ρ ¼ R

d2αPðαÞjαihαj, where PðαÞ is referred to as the
Glauber-Sudarshan P function. When PðαÞ corresponds to
a proper probability density function, the quantum state is a
statistical mixture of coherent states and is considered
classical. More generally, PðαÞ may not correspond to any
classical probability density function; in which case, the
state is considered nonclassical. It is well known that the
only classical pure states are the coherent states [32].
Because the P function is frequently highly singular

[33], it is neither theoretically nor experimentally

accessible in many instances. As such, previous efforts
have largely focused on finding methods to quantify
nonclassicality via other means. The Mandel Q parameter
[7], for instance, measures the deviation from Poissonian
statistics. The entanglement potential quantifies the maxi-
mum amount of entanglement that can be generated from a
beam splitter [8]. The nonclassicality depth quantifies the
amount of interaction with a thermal state in order to erase
nonclassicality [9,10]. One may also count the number of
superpositions of coherent states [11], the amount of
coherent superposition between coherent states [12], the
sensitivity of a quantum state to operator ordering [13],
various geometric distances from the closest classical state
[13–16], the negativity of the Wigner function [17], non-
Gaussianity [18,19], or the amount of metrological advan-
tage [20,21]. However, these nonclassicality measures are
frequently computationally intractable, unable to detect
every nonclassical state, or lack physical interpretations.
In this Letter, we propose a method to directly quantify the

negativity of the P function and, more generally, any s-
parameterized quasiprobability [34] in a consistent way. It is
based on the nonclassicality filtering approach considered in
Refs. [35,36]. We show that the negativity of the s-para-
meterized quasiprobabilities monotonically increases with s
and that this approach leads to a continuous hierarchy of
nonclassicality measures under the operational resource
theory of nonclassicality proposed in Ref. [12]. In particular,
the negativity of the P function is shown to have a direct
operational interpretation in terms of the robustness of non-
classicality to statistical noise, as well as the cost of simu-
lation. Finally, we propose an approximate nonclassicality
monotone that is numerically computable for an arbitrary
quantum state. For readability, detailed discussions of tech-
nical proofs are deferred to the Supplemental Material [37].
Preliminaries.—We first introduce the characteristic

function of the Glauber-Sudarshan P function. A common
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convention is to define it as the integral
R
d2αPðαÞ×

exp½2iðβiαr − βrαiÞ�, where αr, βr and αi, βi are the real
and imaginary components of α and β, respectively. One
observes that this is a multivariate Fourier transformation.
For our purposes, we will adopt the following convention:

χðβÞ ≔
Z

d2αPðαÞ exp½2πiðβiαr þ βrαiÞ�:

It should be clear that this definition essentially corre-
sponds to a change in variables of types βi → πβ0i and
βr → −πβ0r, and so it does not alter the information content
of the characteristic function. It also adheres more closely
to the conventional definition of the Fourier transform
in the ordinary frequency domain: FfðyÞ ≔ R

dxfðxÞ×
expð−2πixyÞ. The corresponding inverse Fourier transform
is then F−1fðyÞ ≔ R

dxfðxÞ expð2πixyÞ. This allows us to
write PðαÞ ¼ FχðαÞ. All physical characteristic functions
satisfy jχðβÞj ≤ expðπ2jβj2=2Þ.
One major issue with the P function is that it is

frequently highly singular. This complicates our ability
to analyze and quantify the nonclassicality of quantum
states via the P function alone, and it necessitates the use of
other nonclassicality criteria.
We consider the filtered P functions proposed in

Ref. [35]. Filtered P functions are based on the observation
that PðαÞ is the (multivariate) Fourier transform of the
characteristic function χðβÞ such that PðαÞ ¼ FχðαÞ. This
opens up the possibility of applying a filtering function
ΩwðβÞ prior to the Fourier transform. The non-negative
parameter ω is to be interpreted as the width of the filter.
The filtered function is then

PΩ;wðαÞ ≔ FχΩ;wðαÞ

where χΩ;wðβÞ ≔ χðβÞΩwðβÞ. In general, the characteristic
P and filtered P functions depend on the state ρ. When the
state ρ is unambiguous, the characteristic function is
denoted χ and χðαÞ is the function at point α. When ρ
needs to be specified, the characteristic function is denoted
χðρÞ, whereas χðαjρÞ is the function at α. Similar notations
will also be used for the unfiltered and filtered P functions.
s-parameterized negativities.—The goal is to be able to

consistently define the negativity of the P function, even
when it is highly singular. For this purpose, we consider a
carefully chosen nonclassicality filter Ωw satisfying the
following properties: (a) ΩwðβÞ is factorizable such that
ΩwðβÞ ¼ Ω1

wðβÞΩ2
wðβÞ such that Ωi

wðβÞ is square integrable
for i ¼ 1, 2. (b) Ω1

wðβÞeπ2jβj2=2 is square integrable.
(c) Ωwð0Þ ¼ 1 and limw→∞ ΩwðβÞ ¼ 1. (d) There exists
t > 0 such that ΩwðβÞ ¼ Ωw=jrjðβÞΩtðβÞ for any jrj < 1,
and some t > 0. (e) ΩwðβÞ ¼ ΩkwðkβÞ for any k > 0.
Note that these conditions are stronger than those

proposed in Ref. [35]. There, the key requirement was
for ΩwðβÞeπ2jβj2=2 to be square integrable in order to ensure

that its Fourier transform would also be square integrable
due to Plancherel’s theorem. Square integrability is, how-
ever, not sufficient to ensure that PΩ;wðαÞ is pointwise finite
for every α. Our modified approach closes this gap by
ensuring that PΩ;wðαÞ is always finite, which allows us to
numerically determine whether there is negativity at a given
point α.
Theorem 1: If Ωw satisfies properties (a) and (b), then

PΩ;wðαÞ contains no singularities and is finite for every α.
Theorem 1 thus allows us to assign definite positive or

negative values at every point α of PΩ;wðαÞ. This implies
that we can determine unambiguously the positive and
negative regions of PΩ;wðαÞ. As such, for every w, the
negative volume of PΩ;wðαÞ is well defined. Property
(c) then guarantees that the filtered function is a proper
quasiprobability function such that

R
d2αPΩ;wðαÞ ¼ 1 and

that, for sufficiently large w, FΩwðαÞ ≈ δðαÞ; so, the
original P function is retrieved.
It is well known that the characteristic function of P is

related to the characteristic functions of other commonly
studied quasiprobability distributions via the following
relation:

χsðβÞ ≔ χðβÞe−ð1−sÞπ2jβj2=2:

This differs slightly from the usual convention due to the
convention we employ for χðβÞ. For s ¼ 1, we retrieve
the characteristic function of the P function; for s ¼ 0,
the characteristic function leads to the Wigner function;
whereas for s ¼ −1, the characteristic function is related to
the Husimi Q function. These form the set of s-para-
metrized quasiprobability distributions [34]. Just like for
the P function, we can also apply a filter to other s-
parametrized quasiprobabilities. This allows us to define
the s-parametrized negativity in the following manner:
Definition 1 [s-parametrized negativity].—Let PsðαÞ ≔

FχsðαÞ be some s-parametrized quasiprobability; and let
Ps;Ω;wðαÞ ≔ Fχs;Ω;wðαÞ be the filtered s-parametrized qua-
siprobability, where χs;Ω;wðβÞ ≔ χsðβÞΩwðβÞ for some filter
Ωw satisfying properties (a)–(c).
We can then write Ps;Ω;wðαÞ ¼ Pþ

s;Ω;wðαÞ − P−
s;Ω;wðαÞ,

where P�
s;Ω;wðαÞ are well defined non-negative functions.

The s-parametrized negativity is defined as

N sðρÞ ≔ lim
w→∞

Z
d2αP−

s;Ω;wðαÞ:

In particular, when s ¼ 1, N 1ðρÞ ≔ N ðρÞ is the neg-
ativity of the P function.
Given the above definitions, one still needs to find an

appropriate filter Ωw. The astute reader may have noticed
that properties (d) and (e) are not yet discussed. They will
play an important role, which will be described in greater
detail in a subsequent section. We first establish several
properties of the s-parameterized negativities.
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Negativity as a linear optical monotone.—In Ref. [12], a
resource theoretical approach was proposed to quantify
nonclassicality in radiation fields. There, it was argued that
nonclassicality measures should be linear optical monot-
ones; i.e., nonclassicality should be measured using quan-
tities that do not increase under linear optical maps. Under
this approach, nonclassicality may be considered as resour-
ces that overcome the limitations of linear optics.
Linear optical maps are formally defined to be any

quantum map that can be written in the form

ΦLðρAÞ ≔ TrE½ULðρA ⊗ σEÞU†
L�;

where σE is a classical state, andUL is a linear optical unitary
composed of any combination of beam splitters, phase
shifters, and displacement operations. Such unitary trans-
forms will always map anN mode bosonic creation operator

a†μ⃗ ≔
XN
i¼1

μia
†
i

into a†
μ⃗0
þ ⊕N

i−1 αi1ni, where μ⃗, μ⃗
0, are N-dimensional com-

plex vectors of unit length, and 1i is the identity operator on
the ith mode.
One may also incorporate postselection into the defi-

nition by defining selective linear optical operations via a
set of Kraus operatorsKi for which there exist linear optical
unitary UL, classical ancilla σEE0 , and a set of orthogonal
vectors fjiiE0 g such that

TrE½ULðρA ⊗ σEE0 ÞU†
L� ¼

X
i

piρ
i
A ⊗ jiiE0 hij;

where piρ
i
A ≔ KiρAK

†
i and pi ≔ TrðKiρAK

†
i Þ.

Based on this definition, the following theorem shows
that the negativities N s form a continuous hierarchy of
linear optical monotones that belongs to the operational
resource theory outlined in Ref. [12].
Theorem 2: The s-parametrized negativity N sðρÞ

is a nonclassicality measure satisfying the following
properties: (1) N sðρÞ ¼ 0 if ρ has a classical P function.
(2a) (Weakmonotonicity)N sðρÞ ≥ N sðΦLðρÞÞ. (2b) (Strong
monotonicity)

N sðρÞ ≥
X
i

piN sðρiÞ;

where pi ≔ TrðK†
i KiρÞ, ρi ≔ ðKiρK

†
i Þ=pi, and

ΦLðρÞ ¼
X
i

KiρK
†
i

is a selective linear optical operation. (3) (Convexity), i.e.,

N s

�X
i

piρi

�
≤
X
i

piN sðρiÞ:

In particular, if s¼1 andN 1ðρÞ≔N ðρÞ, thenN ðρÞ ¼ 0

if and only if ρ has a classical P function; i.e., N is a
faithful measure identifying every nonclassical state.
Theorem 3: N sðρÞ is a monotonically increasing func-

tion of −1 ≤ s ≤ 1 and is upper bounded by the negativity
of the P function, i.e., N sðρÞ ≤ N ðρÞ.
We can interpret the s-parametrized quasiprobability

distributions as theP functionwith a Gaussian filter applied.
In general, as s decreases, the width of the applied Gaussian
filter increases, which decreases any observed negativity.
This leads to correspondingly weaker measures. This
decrease in the negativity may be interpreted as the effect
of measurement inefficiencies [39]. For a double homodyne
measurement with quantum efficiency η ∈ ½0; 1�, the effec-
tively observed P function is PsðαÞ, where s ¼ 2 − 1=η.
Ultimately, any negativity that is observed in the s-para-
metrized quasiprobabilities originates from the negativity of
the Glauber-Sudarshan P function.
Operational interpretations of the negativity.—An

operational measure that has been extensively studied in
various quantum resource theories is the robustness
[40,41]. It quantifies the minimum amount of mixing with
noise that is necessary to make a given quantum state
classical. It turns out that the negativity exactly quantifies
the robustness of a given quantum state.
We can consider the following definition for the robust-

ness of nonclassicality:
Definition 2 [Robustness of nonclassicality].—Let P be

the set of all quantum states with classical P distributions.
The robustness of nonclassicality is defined as

RðρÞ ≔ min
σ∈P

�
rjr ≥ 0;

ρþ rσ
1þ r

∈ P
�
:

Based on the above definition, one may show that the
negativity and the robustness are, in fact, equivalent.
Theorem 4: The negativity and the robustness are

equivalent measures of nonclassicality, i.e., N ðρÞ ¼
RðρÞ for every quantum state ρ.
Theorem 4 therefore provides a direct operational

interpretation for the negativity of the P function. The
negativities of other s-parametrized quasiprobabilities can
then be interpreted as lower bounds to the robustness. We
also point out that PsðαÞ may be interpreted as the P
function after interaction with a thermal environment
[2,9,10]. This means that, at s < 1, the negativity corre-
sponds to the robustness of state under less than ideal
environmental conditions; whereas at s ¼ 1, it is the
robustness under ideal conditions.
Another possible interpretation of the negativity is as the

cost of simulating a nonclassical state in phase space. In
particular, it is possible to show that the number of samples
sðϵ; δÞ required to classically simulate the measurement
outcomes with a sampling error of less than ϵ and a success
probability greater than 1 − δ scales with [24,37]
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sðϵ; δÞ ∝ ½1þ 2N ðρÞ�2:

Because N ðρÞ ¼ 0 when the state is classical, the factor
½1þ 2N ðρÞ�2 describes the additional overhead required to
simulate a nonclassical state. This suggests that states with
greater negativities tend to be harder to simulate.
Approximate nonclassicality monotones.—The negativ-

ity of quasiprobabilities is well defined in Definition 1 but
does not always lead to finite quantities. For instance, highly
singular states such as squeezed states can possess infinite
negativities. This can be verified numerically by applying an
appropriate filter and computing the filtered negativities as
w → ∞. From Theorem 4, we know that this is because
some states require an infinite amount of statistical mixing
with classical states before their nonclassicality is erased.
Nevertheless, N s remains a linear optical monotone. For
s ¼ 1, we retrieve the negativityN of theP function, which
is able to unambiguously identify every nonclassical state.
For s < 1, N s are weaker measures that may not be able to
identify some nonclassical states. For instance, at s ¼ 0,N s
is the negativity of the Wigner function [17]. It is a well-
known property of the Wigner function that its negativity
cannot detect squeezed states.
It is natural to ask whether it is possible to avoid infinite

values while simultaneously maximizing the number of
identifiable nonclassical states. We show that this is possible
via an appropriate choice of filters that satisfies the full suite
of properties (a)–(e) (see Preliminaries section).
Theorem 5: If the filter Ωw satisfies properties (a)–(e),

with δ ≔ N ðFΩw¼1Þ, the filtered negativity N ðPΩ;wÞ is an
approximate nonclassicalitymeasure satisfying the following
properties: (1)N ðPΩ;wÞ≤δ if ρ is classical. (2) (Approximate
monotonicity) For any linear optical map ΦL,

ð1þ 2δÞN ½PΩ;wðρÞ� þ δ ≥ N fPΩ;w½ΦLðρÞ�g:

(3) (Convexity)

N
�
PΩ;w

�X
i

piρi

��
≤
X
i

piN ½PΩ;wðρiÞ�:

Theorem 5 suggests that, given a filter that satisfies
properties (a)–(e), the filtered negativity N Ω;wðρÞ is an
approximate linear optical monotone when the negativity of
FΩw is small. Ideally, we would like the Fourier transform
of the filter to be pointwise positive and still satisfy
properties (a)–(e), which would imply that the filtered
negativity is an exact linear optical monotone that can be
computed for every w > 0. It remains unclear whether this
is possible, but we demonstrate that the negativity of the
filter can at least be made arbitrarily small such that the
filtered negativity is essentially a linear optical monotone to
any required level of precision.

Proposition 1: Define Ωw;ϵðβÞ ≔ expð−jβ=wj2þϵÞ,
where w > 0 is the width parameter, and ϵ > 0 is the error
parameter.
Then, Ωw;ϵ is a filter that satisfies properties (a)–(e).

Furthermore, N ðFΩw¼1;ϵÞ → 0 as ϵ → 0.
Examples.—Here, we provide some numerical examples

that illustrate our results for the negativity of the P function
N , the s-parametrized negativity N s and the filtered neg-
ativityN Ω;w ≔ N ðPΩ;wÞ using several prominent nonclass-
ical states.Wewill use the filterΩw;ϵ from Proposition 1. The
error parameter ϵ is chosen to be ϵ ¼ 0.21 such that
2δ ¼ 2N ðΩw¼1;ϵÞ ≈ 0.05. From Theorem 5, this means that
the resulting filtered negativity N Ω;w is a linear optical
monotone up to approximately a 5% error. Note that this
choice is arbitrary because δ can be made as small as desired
by decreasing ϵ.
For highly nonclassical states such as Fock and

squeezed-vacuum states, N is infinitely large, which can
be verified numerically via Definition 1. One example of a
nonclassical state with finite N is the single-photon-added
thermal (SPAT) state, which is defined by ρSPAT ¼
a†e−βℏωa

†aa=Trðe−βℏωa†aaa†Þ. Its characteristic function
is χSPATðβÞ ¼ ½1 − π2ð1þ n̄Þjβj2�e−π2jβj2=n̄, and the corre-
sponding P function is [42]

PSPATðαÞ ¼
1þ n̄
πn̄3

�
jαj2 − n̄

1þ n̄

�
e−jαj2=n̄:

Figure 1(a), illustrates how the filtered negativity
N Ω;wðρSPATÞ approaches N ðρSPATÞ as w → ∞, which
comes directly from Definition 1. From Theorem 2, we
know that the negativity N ðρSPATÞ cannot be increased via
linear optical processes.
From Theorem 3, we know that the s-parametrized

negativity N s is a monotonically decreasing function of
s. We illustrate this using Fock states jni. Its s-parametrized
characteristic function as given by jni is χsðβÞ ¼
eðs−1Þπ2jβj=2Lnðπ2jβj2Þ, with the corresponding s-parame-
trized quasiprobabilities given by [43]

PsðαÞ ¼
2

πð1þ sÞ
�
−
1− s
1þ s

�
n
exp

�
−
2jαj2
1þ s

�
Ln

�
4jαj2
1− s2

�
:

Plotting N s, Fig. 1(b) illustrates its monotonic depend-
ence on s for n ¼ 1, 2, and 3. Also note how, for every s,
N sðjniÞ increases with n. Theorem 2 says that N sðjniÞ for
s < 1 are also valid, albeit weaker, nonclassicality mea-
sures according to the resource theory of Refs. [12,20].
The s-parametrized negativities can be infinite in gen-

eral. One example is the squeezed vacuum state jri ¼
erða†2−a2Þ=2j0i. Its characteristic function is

χsðβ ¼ xþ iyÞ ¼ exp

�
π2

2
½ðs − e2rÞx2 þ ðs − e−2rÞy2�

�

PHYSICAL REVIEW LETTERS 124, 110404 (2020)

110404-4



for r > 0. If s ≤ e−2r, then the s-parametrized quasiprob-
ability of jri is Gaussian, and so it does not show any
negative value. However, if s > e−2r, then its quasiprob-
ability distribution shows extremely singular behavior; and
one can numerically verify that N s is infinite. In such
cases, N s is useful to identify the nonclassicality of the
state, but it is unable to capture the increase in non-
classicality that one gets from additional squeezing. This
can be circumvented by considering the filtered negativ-
ity N Ω;w.
Figure 1(c) illustrates the filtered negativitiesN Ω;w of the

squeezed vacuum states jriwith squeezing parameter r. We
see that the filtered negativity captures the increase in
nonclassicality due to the increase in squeezing r. As the
filter Ωw;ϵ has nonzero negativity, N Ω;w is only an
approximate monotone (see Theorem 5), but this error
can be made arbitrarily small by decreasing the parameter ϵ.
This may, however, require increased numerical precision,
and hence incur additional computational costs.
Conclusion.—We introduced a method to define the

negativity of the s-parametrized quasiprobabilities. Our
method is based on a modified version of the filtered P
function in Ref. [35]. Based on this definition, it is possible
to show that the negativity of the set of s-parametrized
quasiprobabilities are all linear optical monotones and form
a continuous hierarchy of increasingly weaker nonclassi-
cality measures that all belong to the operational resource
theory of nonclassicality considered in Refs. [12,20].
In general, the s-parametrized negativities may have

infinite values. In order to circumvent this, we introduce an
approximate linear optical monotone that is finite comput-
able and able to identify nearly every nonclassical state. A
key advantage of this approach is that the set of unidentifi-
able nonclassical states can be made to converge to nil by
increasing the parameter w. The error can also be controlled
via a single parameter ϵ.
We also demonstrate in Theorem 4 that the negativity of

the P function has a direct operational interpretation as the
robustness. Because N ðρÞ is not always finite, this means
that there are some states for which the nonclassicality

cannot be erased by simple statistical mixing with classical
noise. This is a characteristic it shares with quantum
coherence, where simple mixing with an incoherent state
cannot make the state classical in general [41].
Finally, we comment that our proposed measures are

practical under realistic settings. In order to compute the
proposed measures, one only requires the characteristic
function of the quantum state, with no limitations on
whether the state is mixed or pure. The characteristic
function may be sampled directly in the laboratory using
only homodyne measurements [44]. More generally, the
reconstruction of any of the s-parametrized quasiprobabil-
ities [45] allows you to infer the characteristic function, and
hence compute our proposed measures.
We hope our work will spur continued interest in the

study of nonclassicality in light fields.
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