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Generation of quasiparticle-hole pairs in gapped graphene monolayers in the combined field of
two counterpropagating light waves is studied. The process represents an analog of electron-positron pair
production from the vacuum of quantum electrodynamics (QED) by the Breit-Wheeler effect. We show,
however, that the two-dimensional structure of graphene causes some striking differences between both
scenarios. In particular, contrary to the QED case, it allows for nonzero pair production rates at the energy
threshold when the Breit-Wheeler reaction proceeds nonlinearly with absorption of three photons.
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Introduction.—When atoms or molecules interact with
strong laser fields, nonlinear processes relying on the
absorption of multiple photons can occur due to the very
high photon densities in the field. A variety of strong-field
phenomena were discovered, ranging from multiphoton
ionization to high-harmonic generation [1], which have
paved the way towards new research areas [2].
In recent years there has been a growing interest in

interactions of intense laser fields with condensed matter
systems [3]. While some of the basic strong-field concepts
established in atomic physics can be applied to solids as
well [4,5], their more complex electronic structure renders
laser-solid interactions generally more involved. In par-
ticular, condensed-matter systems can be distinguished
by the geometric arrangement of atoms, the symmetry
and topology of the band structure, and the behavior of
electrons therein. The question thus arises which signatures
may emerge in intense laser-solid interactions from the
characteristic properties of the system. For example, dis-
tinct topological effects from edge states in linear chains
have recently been predicted for the strong-field process of
high-harmonic generation in solids [6].
A solid-state system of special relevance for strong-

field studies is graphene [7] because it can withstand high
laser intensities. It is distinguished by its two-dimensional
geometry, forming a monolayer of carbon atoms, and its
peculiar electronic properties. At zero chemical potential,
the electrons in a vicinity of the Fermi surface exhibit a
dispersion relation like Dirac fermions, with the speed of
light c replaced by the Fermi velocity vF ≈ c=300. Recent
experiments have demonstrated coherent control of electron
dynamics in graphene by driving Landau-Zener transitions
with phase-stabilized short laser pulses [8], including the
passage from the weak-field to the strong-field regime [9].
Field-driven acceleration of Dirac fermions, which also
exist in topological insulators [10], has been observed by

combined irradiation of bismuth-telluride surfaces with
intense terahertz and short ultraviolet pulses [11].
Graphene moreover serves as a test ground for strong-

field processes from the realm of quantum electrodynamics
(QED). Fundamental phenomena, such as Klein tunneling
[12], Casimir force [13], or Coulomb supercriticality
[14], find their low-energy counterpart in graphene.
Theoreticians have also discovered graphene as a means
to study the Schwinger effect, i.e., the spontaneous pro-
duction of electron-positron pairs in a constant electric
field E0 [15–22]. The similarity with QED is particularly
close in band gap graphene where the quasiparticles acquire
a nonzero mass [23]. The Schwinger rate has the character-
istic form RS ∼ Eν

0 expð−πEc=E0Þ with the critical field
strength Ec associated with the particle mass. The different
geometry of the underlying vacuum state only exerts a
minor impact here by changing the power of the pre-
exponential factor from ν ¼ 2 in QED to ν ¼ 3=2 in
graphene [15,21].
In this Letter, we study another strong-field process in

graphene which has its counterpart in QED. When a
graphene sheet is exposed to the electromagnetic field
of two counterpropagating light waves, quasiparticle-hole
pairs can be generated by photon absorption (see Fig. 1).
This process represents the analog of (non)linear Breit-
Wheeler [(N)LBW] pair production from the QED vacuum
[24–27]. It may be written symbolically as

nkþ k0 → p− þ pþ; ð1Þ

where n denotes the number of photons with wave vector k
from a strong laser field and k0 is the wave vector of a
weak counterpropagating wave, whereas p� stand for the
momenta of created electron and hole, respectively. The
NLBW process of QED was observed in an intermediate
coupling regime (n ∼ 5) in collisions of a highly relativistic
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electron beam with an intense optical laser pulse [27]. The
original (i.e., linear) Breit-Wheeler process with n ¼ 1
[24], however, has not been measured yet. Corresponding
theoretical proposals to facilitate its detection have been
made in recent years, which rely on various kinds of
gamma-ray sources in the MeV-GeVenergy range [28–31].
Here we provide a theoretical description of the (N)LBW
process in gapped graphene monolayers and show that, in
principle, they can offer a low-energy alternative, similarly
to the Schwinger effect [15–22]. However, our analysis
also reveals pronounced qualitative differences with the
QED case, which emerge from the two-dimensional struc-
ture of graphene.
Planck’s constant and the vacuum permittivity are set to

unity, ℏ ¼ ϵ0 ¼ 1, to simplify notation. The speed of light
in vacuum is denoted by c and the electron charge and mass
by e and me, respectively.
Theoretical considerations.—An effective field theoreti-

cal framework—that suitably incorporates the electron-
hole symmetry predicted within the nearest-neighbor
tight-binding model [32] under the assumptions of zero
temperature and chemical potential—is adopted. It relies on
a Lagrangian density in which the interplay between
massive Dirac quasiparticles and an electromagnetic poten-
tial AμðxÞ [A0ðxÞ ¼ 0], with μ ¼ 0, 1, 2, x ¼ ðct; xÞ and
x ¼ ðx; yÞ, occurs via a minimal coupling [33,34]:

L ¼
X

σ¼�1

Ψ̄σ

�
iγ̃0∂t þ vFγ̃j

�
i∂j −

e
c
Aj

�
− Δ

�
Ψσ: ð2Þ

Here, Ψ̄σ ¼ Ψ†
σγ̃0, ΨT

σ ¼ ðψT
σ;K;ψ

T
σ;K0 Þ is a four-component

spinor consisting of two two-component irreducible
pieces corresponding to the K and K0 points of the Fermi
surface. The spinors ψT

σ;K ¼ ðψσ;K;A;ψσ;K;BÞ, ψT
σ;K0 ¼

ðiψσ;K0;B;−iψσ;K0;AÞ combine Bloch states associated with
the twodifferent sublattices in graphene linked to atomsA and
B, whereas the electron spin is included via an additional
particle flavor σ. The gamma matrices γ̃μ form a reducible
4 × 4 representation, satisfying fγ̃μ; γ̃νg ¼ 2gμν14×4 with the
metric tensor gμν ¼ diagð1;−1;−1Þ. Explicitly, we take γ̃μ ¼
τ ⊗ ðγ1; γ2; γ3Þ with τ ¼ σ3, γμ¼ðσ3;iσ2;−iσ1Þ, and the
Pauli matrices σl,l ¼ 1, 2, 3. Thematrices τ and γμ act in the
spaces of K, K0 points and A, B sublattices, respectively.
Moreover, in Eq. (2) a sumover the repeated index j ∈ f1; 2g
is implied andwe introduce a half bandgapΔ ¼ mgv2F,which
leads to a relativisticlike dispersion relation for quasiparticles
εp ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2Fp

2 þ Δ2
p

relative to the Fermi level [22,23].
Likewise, the momentum p ¼ ðpx; pyÞ has to be understood
relative to the K and K0 points, satisfying the condi-
tion jpj ≪ pmax ≈ jKj; jK0j ≈ 3 eV=vF.
While the fermion states are spatially constrained to the

graphene plane, the electromagnetic field extends over all
three space dimensions. AμðxÞ in Eq. (2) denotes the value
of the associated vector potential on the x-y plane. In the
following, AμðxÞ ¼ aμðxÞ þ a0μðxÞ is composed of two
counterpropagating electromagnetic plane waves aðxÞ ¼
a0ϵ cosðkxÞ and a0ðxÞ ¼ a00ϵ

0 cosðk0xÞ, with wave vectors
kμ ¼ ðω=c; kÞ, k0μ ¼ ðω0=c; k0Þ and polarization vectors ϵ,
ϵ0 satisfying the transversality relations k · ϵ ¼ k0 · ϵ0 ¼ 0.
The amplitudes are supposed to fulfill the condition
ηg ≫ η0g, in terms of the graphene-modified intensity

parameters ηð0Þg ¼ jejað0Þ0 =ðmgvFcÞ. We will restrict our-
selves to the situation in which both the propagation and
polarization directions of the electromagnetic waves lie
in the plane of graphene (see Fig. 1) [35]. The chosen field
configuration maximizes the photon energy and field
amplitudes which are available for pair production in the
graphene layer (nonparallel polarization geometries are
briefly considered in the Supplemental Material [36]).
Being interested in the intensity regime where ηg,

η0g ≪ 1, we calculate the probability for (N)LBW pair
production in graphene (1) by applying perturbation theory
in both fields. Observe that, as ηg ≫ η0g, the effect of the
strong plane wave can be investigated via coherent states,
which is equivalent to considering the corresponding field
as a classical background [37]. Hence, the corresponding
scattering operator reads

S ¼ T̂ exp

�
ie
vF
c

X

σ¼�1

Z
dtd2xðψ̄σ;Kγ · ðaþ a0Þψσ;K

þ ψ̄σ;K0γ · ðaþ a0Þψσ;K0 Þ
�
; ð3Þ

B

A

Strong wave
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Substrate
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FIG. 1. Scheme of Breit-Wheeler-type production of massive
Dirac pairs in a gapped graphene monolayer. The enlarged
section illustrates graphene’s honeycomb lattice composed of
two sublattices A and B. The reciprocal lattice in momentum
space is hexagonal, as well, with inequivalent K and K0 points in
the corners [7]. A representative Feynman diagram is shown
which contributes to the three-photon reaction; the wavy lines
indicate photons absorbed from fields a0 and a, respectively, with
the latter being treated as a classical source as marked by the
crosses.
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with ψ̄σ;Kð0Þ ¼ ψ†
σ;Kð0Þγ

0. Here, the field a0ðxÞ is quantized

[36] and T̂ refers, as usual, to the time-ordering operator.
The quantization of the Dirac-like fields ψσ;K and ψσ;K0

requires to introduce equal-time anticommutation relations,
which preserve the corresponding spin and valley quantum
numbers [36]. Accordingly, we can restrict ourselves to
S-matrix elements generated by the first term in Eq. (3)
and, at the end, multiply the outcome by the spin-valley
degeneracy Nf ¼ 4.
We remark that the treatment used here differs from the

traditional path of analyzing the NLBW process in QED,
where the Furry picture, based on exact solutions of the
Dirac equation in the presence of a single plane-wave laser
field (Volkov states), is applied [25,26]. The corresponding
Dirac-like equation in graphene, however, is not solved by
Volkov states [38] due to the asymmetry introduced by the
Fermi velocity vF. Besides, we note that pair creation by a
single photon is kinematically forbidden in gapped gra-
phene (like in QED), whereas in pristine graphene with
Δ ¼ 0 it would represent the leading-order production
process [39].
Next, we proceed to determine the S-matrix element

describing the creation of a quasiparticle with energy
momentum ðεp− ; p−Þ and its antiparticle with ðεpþ ; pþÞ
relative to the K point by the collision of two photons
kμ and k0μ. In graphene this amplitude reads

hpþp−jS1jk0; ϵ0i ¼ −ð2πÞ3NþN−
e2a0a00v

2
F

4c2
M1

× δðεpþ þ εp− − ω − ω0Þ
× δð2Þðpþ þ p− − k − k0Þ: ð4Þ

Here, the δ functions encode energy-momentum conserva-
tion and N� ¼ ½Δ=ðεp�AÞ�1=2 are the normalization con-
stants of the quantized Dirac-like field with A referring
to the normalization area. Besides, the subscript 1 in the
scattering operator and the spinor-matrix product M1

refers to the number of photons absorbed from the classical
source. The latter is given by

M1 ¼ ūKðp−Þ½=ϵ 0SKðω − εpþ ; k − pþÞ=ϵ
þ =ϵSKðω0 − εpþ ; k

0 − pþÞ=ϵ 0�vKðpþÞ: ð5Þ

We point out that, in this equation the usual slash notation
for products with γ matrices has been employed. While
uKðp−Þ and vKðpþÞ are two-dimensional spinors fulfilling
the relations uKðpÞūKðpÞ ¼ ðγ0εp − vFγ · pþ ΔÞ=ð2ΔÞ,
vKðpÞv̄KðpÞ ¼ ðγ0εp − vFγ · p − ΔÞ=ð2ΔÞ, SK refers to
the free propagator linked to the Dirac-like field:

SKðε; pÞ ¼
i

γ0ε − vFγ · p − Δþ i0þ
: ð6Þ

The rate of pair production per unit area is obtained by
taking the square of the S-matrix element, dividing through
the interaction time T0 and normalization area A, and
integrating over the final density of states

Rð2þ1Þ
1 ¼Nf

Z
Ad2pþ
ð2πÞ2

Z
Ad2p−

ð2πÞ2
jhpþp−jS1jk0;ϵ0ij2

T0A
: ð7Þ

The field frequencies are assumed to be chosen such that
the integrals are restricted to regions where jp�j ≪ pmax.
Equation (7) contains the term jM1j2 which can be
rewritten as a trace over the 2 × 2-gamma matrices. We
point out that, due to their reduced dimensionality, several
relations—which are needed to evaluate the trace—differ
from the familiar QED3þ1 case. For instance, while in 3þ 1
dimensions Tr½γμγν� ¼ 4gμν and Tr½γμγνγρ� ¼ 0, in the
case under consideration one has Tr½γμγν� ¼ 2gμν and
Tr½γμγνγρ� ¼ −2iϵμνρ, where the totally antisymmetric ten-
sor ϵμνρ is defined with ϵ012 ¼ 1. Having these properties in
mind and the fact that vF=c ≪ 1, we arrive at [36]

Rð2þ1Þ
1 ≈ η2gη

02
g m3

gv4F
r2ð4þ r2Þ
4ð1þ r2Þ5=2 ; ð8Þ

where r ¼ jpj=ðmgvFÞ denotes a dimensionless parameter
and ω ¼ ω0 is assumed, such that p≡ pþ ¼ −p− [40].
A particularly interesting outcome results from the

amplitude describing the production of pairs driven by
the absorption of two classical photons and a quantized
field (see Feynman diagram in Fig. 1):

hpþp−jS2jk0; ϵ0i ¼ −ið2πÞ3NþN−
e3a20a0

0v3F
8c3

M2

× δðεpþ þ εp− − 2ω − ω0Þ
× δð2Þðpþ þ p− − 2k − k0Þ: ð9Þ

The corresponding production rate Rð2þ1Þ
2 is obtained by

inserting the expression of M2 given in Ref. [36] and
following the procedure outlined above. Considering the
smallness of the parameter vF=c ≪ 1 and assuming
ω0 ¼ 2ω, we find

Rð2þ1Þ
2 ≈ η4gη

02
g m3

gv4F
2ð4 − 30r2 þ 108r4 þ 17r6Þ

81ð1þ r2Þ9=2 : ð10Þ

Results and discussion.—Figure 2(a) shows the rates

Rð2þ1Þ
n for Breit-Wheeler pair production in graphene

near the energy threshold for n ∈ f1; 2g. When n ¼ 1,
the rate starts from zero, but for n ¼ 2 it attains a nonzero

value at the threshold [Rð2þ1Þ
2 ≈ 8η4gη

02
g m3

gv4F=81]. This is

in sharp contrast to the rates Rð3þ1Þ
n for the corresponding

processes in QED3þ1 which always vanish at the threshold
[41]. Thus, the special geometry of graphene leads to
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distinct qualitative changes in the properties of NLBW
pair production.

The QED3þ1 rates scale like Rð3þ1Þ
n ∼ αη2njpj for

jpj → 0, with η ¼ jeja0=ðmec2Þ ≪ 1, when the γ beam
is unpolarized [see Fig. 2(b)]. This is in accordance with
Wigner’s well-known theory for the threshold behavior
of quantum mechanical scattering processes with two
particles in the final state [42]. It arises from an expression
of the form

R
d3pþ

R
d3p−jMj2δð4Þðpþ þ p− −QÞ ∝R

dp0þjpþjjMj2δðp0þ þ p0
− −Q0Þ ∝ jpþj under the

assumption that the squared matrix element jMj2 behaves
like a constant near the threshold.
In the case of graphene, this argument needs to be

modified. Because of the reduced dimensionality of the phase
space, it reads

R
d2pþ

R
d2p−jMj2δð3Þðpþþp−−QÞ∝R

dp0þjMj2δðp0þþp0
−−Q0Þ∝ const. This explains why

the NLBW pair production rate at the threshold can be
nonzero in graphene, which occurs when n ¼ 2 [see
Fig. 2(a)]. A similar phenomenon is known from electron-
atom scattering processes occurring in the presence of a
strong magnetic field. The field leads to a reduction of the
effective dimensionality of the problem and, thus, to a
modification of its threshold behavior [43].

Still, the behavior of Rð2þ1Þ
n for n ¼ 1 does not follow

the same law. Instead one finds Rð2þ1Þ
1 ∼ jpj2 [see Eq. (8)].

Here, a more complex explanation is required that

combines the two-dimensional geometry of graphene with
the polarization state of the ω0 photon and the fermionic
nature of the charge carriers. The pair production rates in
graphene rely on incident light waves whose polarization
vectors lie in the graphene plane and are parallel to each
other. The QED3þ1 rates resulting from this field configu-

ration are shown in Fig. 2(c). While Rð3þ1Þ
n for n ¼ 2 still

grows linearly with jpj near the threshold, a cubic depend-
ence ∼jpj3 is found for n ¼ 1. The fact that the produced
particles are fermions is of crucial importance here. In fact,
for scalar particles the rate of the ordinary Breit-Wheeler

process is given by Rð3þ1Þ
1;scal ∼ αη2jpjðϵ · ϵ0Þ2 [44], which

yields a linear dependence on jpj when the photon polar-
izations are parallel. Instead, the leading-order term for

production of Dirac pairs isRð3þ1Þ
1 ∼ αη2jpjðϵ × ϵ0Þ2 which

vanishes in case of parallel polarization vectors. The next-
to-leading order term grows with jpj3, in accordance with
Fig. 2(c). Applying the above argument of reduced phase
space to this scaling law gives the threshold behavior

Rð2þ1Þ
1 ∼ jpj2 found in graphene.
We can gain an intuitive understanding of the vanishing

and nonvanishing threshold rates in graphene for n ¼ 1

and 2, respectively, by considering the total angular
momentum in the process. At the threshold, the quasipar-
ticles do not carry orbital angular momentum (since
p� ¼ 0) and we may assume that the spin is conserved
in the electronic transition from valence to conduction band
[45], meaning that the total spin of the electron-hole pair is
zero. However, its total pseudospin is one, as the structure
of the matrix elements M1 and M2 in combination with
the spinors given in Ref. [36] indicates (see also Ref. [39]).
According to Ref. [45], the latter is associated with one unit
of angular momentum, which must be provided by the
absorbed photons. With two photons this is not possible,

though, implying that Rð2þ1Þ
1 ¼ 0 at the threshold. Instead,

three photons can generate one unit of angular momentum,
so that the corresponding NLBW process is allowed at the

threshold and yields Rð2þ1Þ
2 > 0. The situation resembles

the decay of orthopositronium: As a spin-triplet state, it
annihilates into three photons because a two-photon decay
is forbidden.
An experimental test of our predictions could apply

moderately intense beams of terahertz radiation [11,46]. If
we assume, for example, a gap parameter Δ ¼ 0.1 eV [23],
frequencies ω0 ¼ 2ω≳ 0.1 eV and intensities I0 ¼ 10I00 ¼
105 W=cm2 (ηg ≈ 0.1, η0g ≈ 1.6 × 10−2), we obtain at the

thresholdRð2þ1Þ
2 ≈ 1010 s−1 μm−2. We remark that, in order

to be consistent with our perturbative treatment, the fields
should lie well below the critical field in graphene Ec ¼
Δ2=jejvF for the considered gap. This value corresponds
to the critical intensity Ic ¼ cE2

c=2 ≈ 6 × 107 W=cm2.
Detection of the produced pairs could be achieved by

(a)

(b) (c)

FIG. 2. Near-threshold behavior of the total rates for (N)LBW
pair production in the center-of-mass frame, as a function of the
absolute value of momentum of one of the created particles: (a) in
graphene, (b) in QED3þ1 with an unpolarized γ photon, (c) in
QED3þ1 with a polarized γ photon, for n ¼ 1 (blue solid), n ¼ 2
(red dashed).
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measuring the induced current when an external voltage
is applied [15].
Conclusion and outlook.—Generation of quasiparticle-

hole pairs in gapped graphene monolayers by counter-
propagating photon beams was studied. The process is
analogous to (N)LBW pair production in QED. Focusing
on the low-intensity regime at moderate coupling strengths
(ηg, η0g ≪ 1), we revealed striking qualitative differences
between both phenomena that are caused by the different
dimensionalities of the underlying vacuum state. While the
pair production rate at the energy threshold vanishes in
QED3þ1 for any photon number, in graphene it can attain a
nonzero value. This result has been shown explicitly for a
three-photon reaction and—based on our intuitive angular-
momentum consideration—we expect that it holds gener-
ally when the total number of absorbed photons is odd. This
point will be examined in a forthcoming study.
Future work could, moreover, account for further aspects

in the structure of graphene (such as edge states [6]) and its
interaction with the external field (such as influences of the
substrate on the effective field strength experienced by the
charge carriers [8]). However, since the modified threshold
behavior results from a basic property of graphene, namely,
its two-dimensional geometry, the predicted effects are
expected to be robust and to persist in improved treatments.
Our results furthermore suggest that the (N)LBW process
in topological matter with Dirac-like states might be used to
identify domains where quasiparticle-hole generation is
restricted to two dimensions (like, e.g., on surfaces).
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