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A generalization of quantum discord tomultipartite systems is proposed. A key feature of our formulation
is its consistency with the conventional definition of discord in bipartite systems. It is by construction zero
only for systems with classically correlated subsystems and is a non-negative quantity, giving a measure of
the total nonclassical correlations in themultipartite systemwith respect to a fixedmeasurement ordering. For
the tripartite case, we show that the discord can be decomposed into contributions resulting from changes
induced by nonclassical correlation breaking measurements in the conditional mutual information and
tripartite mutual information. The former gives a measure of the bipartite nonclassical correlations and is a
non-negative quantity, while the latter is related to the monogamy of the nonclassical correlations.

DOI: 10.1103/PhysRevLett.124.110401

Introduction.—One of the foremost aims of quantum
information theory is to understand and quantify the
various forms of quantum correlations. Quantum correla-
tions are ubiquitous in many areas of modern physics,
ranging from condensed matter physics, quantum optics,
high-energy physics, to quantum chemistry. They can be
regarded as the most fundamental type of nonclassical
correlation which includes entanglement, EPR (Einstein-
Podolsky-Rosen) steerable states, and nonlocal correlations
[1,2]. Much work has been done towards constructing
resource theories [3–8] as well as understanding the
operational relevance of information theoretic quantities
[9–13].
For bipartite systems, the best-known measure of the

nonclassical correlations is quantum discord (or discord for
short) [14,15]. This is defined as the minimized difference
between the quantum mutual information with and without
a von Neumann projective measurement applied on one of
the subsystems. The role of the projective measurement is
to break the quantum correlations (for simplicity, we
henceforth use this term interchangeably with “nonclassical
correlations”) between the subsystems, which results in a
classically correlated state [16,17]. The intuition is that by
comparing the mutual information before and after the
breaking of quantum correlations, one can quantify the
amount of quantum correlations in the original state with
respect to the measured subsystem. Quantum generaliza-
tion of such entropies has focused on applications in
quantum state distribution [18–20], optimal source coding

[21], quantum information processing [3,22], and simu-
lation of classical channels with quantum side information
[23,24]. Quantum discord has shown to be a powerful
characterization tool for complex quantum states, such as in
quantum many-body systems [25,26].
For tripartite and larger systems, several generalizations of

discord have been proposed. In Ref. [16] a symmetric
multipartite discord was defined based on relative entropy
and local measurements. Another definition of multipartite
discord was provided in Ref. [27], as the sum of bipartite
discords after making successive measurements. An
approach using relative entropy was defined in Ref. [28]
to define genuine quantum and classical correlations in
multipartite systems. Reference [29] introduced the notion
of quantum dissension defined as the difference between
tripartite mutual information after a single measurement. A
distance-based approachwas formulated inRef. [30], includ-
ing a multipartite measure of quantum correlations [31–33].
Surprisingly, a definition of quantum discord to multi-

partite systems that is consistent with the original bipartite
definition of Refs. [14,15] does not seem to exist. A
reasonable set of properties [34] possessed by such a
measure include (i) zero if and only if the state is a
classically correlated state; (ii) a non-negative quantity; and
(iii) reduction to the standard definition of discord for
bipartitelike correlated subsystems. In the original defini-
tion of quantum discord [14,31,32], a classically correlated
state is one such that the “classical information is locally
accessible, and can be obtained without perturbing the state
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of the system.” This means that given a classically
correlated state, there exists a measurement that can be
performed such that the classical correlations can be
recovered, without altering the density matrix. For exam-
ple, consider the state ðj00ih00j þ j1þih1þ jÞ ⊗ j0ih0j=2.
As a tensor product of a bipartite zero discord state with a
single qubit state, one expects such a state to have zero
tripartite discord, taking the first qubit to be the measured
qubit. Past works based on multipartite mutual information
[16,27,28] give nonzero values for this state, either because
of the type of measurements performed, or a symmetric
definition. Meanwhile, quantum dissension [29] allows
negative values which are not present with discord. For
distance-based definitions [30], one would not expect to
obtain completely equivalent results due to the different
measure used. However, we note that Ref. [30] also uses a
different notion of a classically correlated state than that of
Ref. [14], and takes a nonzero value even for the bipartite
component of the above state.
In this Letter, a natural generalization of discord—as

originally defined in Refs. [14,15]—is made for multipar-
tite systems. Our definition satisfies all of the postulates of
a multipartite discord (i)–(iii), thanks to the concept of
conditional measurements which we introduce here. We
further examine the entropy change to various mutual
information quantities as a result of projective measure-
ments, which leads to a method of decomposing the
multipartite discord into various contributions. This leads
us to propose two more quantities based on mutual
information, which measure the purely bipartite quantum
correlations, and satisfy the properties (i)–(iii) as well as the
monogamy of the quantum correlations in the tripartite
system.
Multipartite measurements.—Let us first start by review-

ing the original definition of discord, which is defined
as [14,15]

DA;BðρÞ ¼ min
ΠA

½SBjΠAðρÞ − SBjAðρÞ� ð1Þ

where the conditional entropy without measurement is
defined SBjAðρÞ¼SABðρÞ−SAðρÞ [14,35,36], where SnðρÞ ¼
−Trρn log ρn is the von Neumann entropy for the (reduced)
density matrix on the system labeled by n. The subsystem
labels on the discord follow the notation such that a
measurement is made on the label preceding the semicolon.
The conditional entropy with measurement is defined [14]

SBjΠAðρÞ ¼
X

j

pA
j SABðΠA

j ρΠA
j =p

A
j Þ; ð2Þ

where ΠA
j is a one-dimensional von Neumann projection

operator on subsystem A and pA
j ¼ TrðΠA

j ρΠA
j Þ is its

probability. The discord is zero if and only if there is a
measurement such that ρ ¼ P

jΠA
j ρΠA

j . The fact that one

can measure one system and yet leave the state unchanged
is a signal that there are no quantum correlations taking A to
be the measured subsystem.
In the above formulation, only one of the subsystems is

measured. For bipartite systems, this is sufficient since the
correlations are only between two subsystems. We first
generalize the bipartite discord to the case where both
subsystems are measured. Although redundant for the
bipartite case, understanding this will prove useful when
generalizing discord to multipartite systems. In order to keep
a consistent definition of discord, we seek ameasurement for
zero discord states such that ρ ¼ P

jk ΠAB
jk ρΠAB

jk . Such a
measurement can always be constructed according to the
form [37]

ΠAB
jk ¼ ΠA

j ⊗ ΠB
kjj ð3Þ

where ΠB
kjj is a projector on subsystem B that is conditional

on the measurement outcome of A [14]. The projectors
satisfy

P
k ΠB

kjj ¼ 1B,
P

jΠA
j ¼ 1A. As mentioned in the

original work of Ref. [14], this would physically corre-
spond to some classical communication from A to B being
exchanged to modify the measurement on B.
Using this form of a measurement, we can then write an

equivalent expression for the discord [Eq. (1)], where
measurements are made on both systems [37]

DA;BðρÞ ¼ min
ΠAB

½SBjAðρΠABÞ − SBjAðρÞ�; ð4Þ

where ρΠAB ¼ P
jk ΠAB

jk ρΠAB
jk is the state after measurement.

Here the optimization is performed over projective measure-
ments of the type given in Eq. (3). For example, the zero
discord state ðj00ih00j þ j1þih1þ jÞ=2 has an optimal basis
ΠAB ∈ fj00ih00j; j01ih01j; j1þih1þ j; j1−ih1 − jg, where
j�i ¼ ðj0i � j1iÞ= ffiffiffi

2
p

. Without conditional measurements,
it would be impossible to obtain consistent results with the
conventional definition of discord because the states j0i, jþi
are not orthogonal by themselves.
For multipartite systems with N subsystems, in general

N − 1 local measurements will be necessary in order to
break all the quantum correlations [16,27]. In an analogous
way to Eq. (4) it is possible to equally make N measure-
ments, but this is unnecessary and adds an extra overhead to
the optimization, hence we consider N − 1 measurements
henceforth. For multipartite systems, each successive
measurement is conditionally related to the previous
measurement. The N − 1-partite measurement is written

ΠA1…AN−1
j1…jN−1

¼ ΠA1

j1
⊗ ΠA2

j2jj1… ⊗ ΠAN−1
jN−1jj1…jN−2

; ð5Þ

where the N subsystems are labeled as Ai. Here the
measurements take place in the order A1 → A2 → …AN−1.
Multipartite quantum discord.—We now show that the

relevant quantity to be minimized in Eq. (1) can be deduced
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by a simple procedure, which always ensures that the
discord takes a zero value for measured states. Evaluating
the entropy of the measured system SABðρΠAÞ, we observe
that this can always be decomposed as

SABðρΠAÞ − SAðρΠAÞ ¼ SBjΠAðρÞ; ð6Þ

where ρΠA ¼ P
j ΠA

j ρΠA
j . The left-hand side takes the form

of conditional entropy SBjAðρΠAÞ and all terms involve the
measured subsystem A. The right-hand side takes the form
of Eq. (2), and is the average entropy of the unmeasured
system B. If ρΠA is replaced by a more general state ρ, the
equality does not hold. The comparison of the left- and
right-hand side for a general state is then related to
the degree of quantum correlations for the measurement
performed on A.
We can follow the same strategy to obtain a multipartite

generalization of discord. Examining tripartite systems
first, the total entropy of SABCðρΠABÞ can be decomposed
to give [37]

SABCðρΠABÞ − SAðρΠABÞ − SBjΠAðρΠABÞ ¼ SCjΠABðρÞ ð7Þ

where we have defined SCjΠABðρÞ ¼ P
jk p

AB
jk ×

SABCðΠAB
jk ρΠAB

jk =p
AB
jk Þ and pAB

jk ¼ TrðΠAB
jk ρΠAB

jk Þ. Here,
the left-hand side contains terms which involve the entropy
of the subsystems AB that are measured, and the right-hand
side is the average entropy of the unmeasured systemC. We
thus define

DA;B;CðρÞ ¼ min
ΠAB

½−SBCjAðρÞ þ SBjΠAðρÞ þ SCjΠABðρÞ� ð8Þ

as a tripartite generalization of discord, for the measure-
ment ordering A → B. This is a non-negative quantity, and
by construction is zero for any postmeasured state; e.g.,
for the state ðj00ih00j þ j1þih1þ j ⊗ j0ih0jÞ=2 we have
DA;B;CðρÞ ¼ 0. Importantly, it is also true in the reverse
direction, that DA;B;CðρÞ ¼ 0 implies that the state is of the
form ρΠAB [37]. The tripartite discord has the attractive
property that it reduces to the standard bipartite dis-
cord when only bipartite quantum correlations are pre-
sent: DA;B;CðρAB⊗ρCÞ¼DA;BðρABÞ, DA;B;CðρBC ⊗ ρAÞ ¼
DB;CðρBCÞ, DA;B;CðρAC ⊗ ρBÞ ¼ DA;CðρACÞ [37].
In Fig. 1 we show several examples of the tripartite

discord for various states. For the Werner states, we see that
the tripartite discord generally follows a similar relation to
bipartite discord, only diminishing to zero when μ ¼ 0,
showing a similar behavior for the Greenberger-Horne-
Zeilinger (GHZ) state and W states. For a GHZ state, it is
known that entanglement is present only for μ > 1=5 [41–
43], showing quantum correlations can be present even
when entanglement is zero. The optimal measurement
[Eq. (3)] on the A subsystem is found to not necessarily
coincide with the optimization for the bipartite discord

between the A and BC subsystems. This is because the
expression Eq. (8) contains contributions from other sub-
divisions. For Bell states the tripartite discord reduces to the
bipartite values [Fig. 1(c)]. The tripartite separable state
shows quantum correlations as expected for any state that is
not a product state [Fig. 1(d)]. This shows the nonconvexity
of the tripartite discord—a property also shared by bipartite
discord—where a mixture of zero discord states can give a
nonzero discord.
The multipartite generalization can be performed by

following the same logic. Evaluating the entropy of an N-
partite system measured using the conditional measure-
ments [Eq. (5)] we have the N-partite discord

DA1;A2;…;AN
ðρÞ ¼ min

ΠA1…AN−1
½−SA2…AN jA1

ðρÞ

þ SA2jΠA1 ðρÞ…þ SAN jΠA1…AN−1 ðρÞ� ð9Þ

for the measurement ordering A1 → A2 → …AN−1.

Here we have defined SAkjΠA1…Ak−1 ðρÞ ¼
P

j1…jk−1 p
ðk−1Þ
j ×

SA1…Ak
ðΠðk−1Þ

j ρΠðk−1Þ
j =pðk−1Þ

j Þ with ΠðkÞ
j ≡ ΠA1…Ak

j1…jk
, pðkÞ

j ¼
TrðΠðkÞ

j ρΠðkÞ
j Þ. This is again a non-negative quantity, and

reduces to lower order discords for states that have
classically correlated subdivisions [44]. For a single m-
dimensional system, the number of parameters to specify a
projector ismðm − 1Þ [45]. For N qubits, there are a total of
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FIG. 1. The tripartite quantum discord and its decompositions.
Definitions of quantities are given in Eqs. (8), (12), (13), and (15).
The states are (a) Werner-GHZ states ρW ¼ μjψihψ j þ
ð1 − μÞ1=8, where jψi ¼ ðj000i þ j111iÞ= ffiffiffi

2
p

; (b) Werner-W
states ρW defined the same as (a), but with jψi¼ðj001iþ
j010iþj001iÞ= ffiffiffi

3
p

; (c) mixed Bell states ρ ¼ μjΦþ
ABihΦþ

ABj þ
ð1 − μÞjΦþ

ACihΦþ
ACj, where jΦþ

ABi ¼ ðj000i þ j110iÞ= ffiffiffi
2

p
,

jΦþ
ACi ¼ ðj000i þ j101iÞ= ffiffiffi

2
p

; (d) tripartite quantum correlated
states ρ ¼ μj000ih000j þ ð1 − μÞjþþþihþþþj. The optimiza-
tion is performed by minimizing the expression Eq. (8) over all
projection measurements Πj ∈ fcos θj0i þ eiϕ sin θj1i; sin θj0i−
eiϕ cos θj1ig for the form Eq. (3), giving six parameters to
optimize.
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P
N−1
n¼1 m

n−1 local projectors in Eq. (5), giving a total of
mN −m parameters to optimize in the discord, Eq. (9).
Quantum discord as an entropy flux.—The multipartite

generalization of discord gives a quantification of the total
quantum correlations in the system with respect to a
particular measurement ordering. In a multipartite system,
it is desirable to identify exactly where the quantum
correlations exist in the system, to see the contributions
between subsystems. Before examining the multipartite
case, it is interesting to revisit the bipartite case first. The
quantum correlation breaking measurement causes a pat-
tern of entropy flux through the system. The entropy
contributions before and after the measurement can be
written as given in Figs. 2(a) and 2(b), where the same
definitions of the entropies are used throughout except the
state changes from ρ to ρΠA [37]. The entropy change for
the three contributions are shown in Fig. 2(c). We see that
the measurement causes the mutual information to decrease
by an amount equal to the discord, and the conditional
entropies increase by the same amount. The conditional
entropy for the measured system A also increases by a local
contribution δSΠAðρÞ, since a measurement is applied on
this subsystem. This has the interpretation that the entropy
corresponding to the quantum correlations are redistributed
into subsystems A and B separately, since the measurement
destroys this for the mutual information.
For tripartite systems, a similar redistribution of entro-

pies occur. The measurement [Eq. (3)] can be performed in

two steps, first performing a measurement on A, then
conditionally performing another measurement on B. The
initial distribution is shown in Fig. 2(d), which changes to
Fig. 2(e) after the first measurement. We define the
measured version of the conditional mutual information
IA∶BjC and tripartite mutual information IA∶B∶C according
to [16,27,29]

JA∶BjCðρÞ ¼ IA∶BjCðρΠAÞ ð10Þ

KA∶BjCðρÞ ¼ IA∶BjCðρΠABÞ ð11Þ

and similarly for the remaining quantities (mutual infor-
mation is denoted with a colon). For a classically correlated
state the above definition ensures IA∶BjC ¼ JA∶BjC ¼
KA∶BjC, but more generally these quantities are not equal.
This naturally leads us to define various contributions to the
entropy change as a result of the measurement. After one
measurement, the conditional mutual information changes
by an amount

ΔA;BjCðρÞ≡ IA∶BjCðρÞ − JA∶BjCðρÞ
¼ dA;BCðρÞ − dA;CðρÞ; ð12Þ

which we call the conditional tripartite discord, and can
be interpreted as the bipartite like quantum correlations
in the system. We may similarly define ΔA;CjB ≡
IA∶CjBðρÞ−JA∶CjBðρÞ, where dA;CðρÞ¼SCjΠAðρÞ−SCjAðρÞ
is the argument to be minimized for the bipartite discord.
This is a non-negative quantity ΔA;BjCðρÞ;ΔA;CjBðρÞ ≥ 0,
and reduces to the bipartite discord without the minimiza-
tion: ΔA;BjCðρAB ⊗ ρCÞ ¼ dA;BðρABÞ [37].
Similarly for the tripartite mutual information we define

ΔA∶B∶CðρÞ≡ IA∶B∶CðρÞ − JA∶B∶CðρÞ
¼ dA;BðρÞ þ dA;CðρÞ − dA;BCðρÞ: ð13Þ

This can take positive or negative values [29]. The fact that
this can be negative is not entirely surprising from the point
of view that even classically, the tripartite mutual informa-
tion can be negative. From the decomposition into discords,
it is evident that this is a monogamy quantity, giving a
negative value for monogamous and positive value for
polygamous quantum correlations [46].
Figure 2(e) shows the changes in the entropy after a

measurement on A [37]. We see that the entropy changes
follow an analogous structure to the bipartite case [Fig. 2(c)].
The three contributions to the entropyΔA;BjC;ΔA;CjB;ΔA∶B∶C
are “extruded” to the unmeasured parts of the system. The
total of the three parts is equal to the conventional bipartite
discord

dA;BCðρÞ ¼ ΔA;BjCðρÞ þ ΔA;CjBðρÞ þ ΔA∶B∶CðρÞ ð14Þ

S A:B Π  |BAA|B I SB|A S A:BJ  B|ΠAS +dA;B +dA;B
Π  A
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B C

SA|BC
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(a) (b) (c)

(d) (e) (f)

A B

FIG. 2. Distribution of various entropies during a measurement
in bipartite and tripartite systems. (a),(d) The initial state before
the measurement. (b) The final state after a measurement on
subsystem A. The thick outline indicates the measured system.
(c),(e) The change in entropy after a measurement on A. (f) The
change in entropy after measuring both A and B. Bipartite
entropy contributions are defined according to IA∶BðρÞ¼
SAðρÞ þSBðρÞ−SABðρÞ, JA∶BðρÞ¼SBðρÞ−SBjΠAðρÞ¼IA∶BðρΠAÞ,
SΠAjBðρÞ≡ SABðρΠAÞ − SBðρΠAÞ, δSΠAðρÞ ¼ SAðρΠAÞ − SAðρÞ,
dA;BðρÞ ¼ SBjΠAðρÞ − SBjAðρÞ. Tripartite entropy contributions
are defined by IA∶BjCðρÞ ¼ SAjCðρÞ − SAjBCðρÞ, IA∶B∶CðρÞ ¼
IA∶CðρÞ − IA∶CjBðρÞ, δSBjΠAðρÞ ¼ SBjAðρΠABÞ − SBjAðρΠAÞ,
ΔB;ΠAjCðρÞ ¼ JA∶BjCðρÞ − KA∶BjCðρÞ, ΔB;ΠA;CðρÞ ¼ JA∶B∶CðρÞ−
KA∶B∶CðρÞ.
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which, combined with a local entropy increase δSΠA , is also
the increase in the conditional entropy of A.
After an additional measurement on B, a similar pattern

emerges, except that the entropy shifts are in the direction
of CA and CB instead of AB and AC as before. Changes in
the conditional mutual and tripartite mutual information are
defined similarly to Eqs. (12) and (13). The most interest-
ing of these terms is

ΔB;CjΠAðρÞ≡ JB∶CjAðρÞ − KB∶CjAðρÞ
¼ dB;ΠACðρÞ − dB;ΠAðρÞ; ð15Þ

which is conditional discord after the measurement of A,
and is also non-negative: ΔB;CjΠAðρÞ ≥ 0 [37]. In addition
to the similar pattern of entropy changes, there are again
local entropy contributions on subsystem B.
The above definitions allow us to write the generalized

discord [Eq. (8)] in an equivalent form:

DA;B;CðρÞ ¼ min
ΠAB

½ΔA;BjCðρÞ þ ΔA;CjBðρÞ þ ΔB;CjΠAðρÞ

þ ΔA∶B∶CðρÞ�: ð16Þ

The tripartite discord can thus be equivalently viewed as the
sum of all conditional discords and the change in the
tripartite mutual information.
This decomposition allows us to attribute various con-

tributions of the total discord to various parts of the system.
Figure 1 shows the decompositions of the multipartite
discord into various components. For the Werner-GHZ
state we see that the conditional discords between AB and
AC take the values ΔA;BjC ¼ ΔA;CjB ¼ DA;B;C, showing that
bipartite quantum correlations exist within the GHZ state,
prior to a measurement on A. Meanwhile, the remaining
conditional discord is ΔB;CjΠA ¼ 0 due to all quantum
correlations (and hence entanglement) collapsing to zero
after the measurement on A is made. The monogamous
nature of the GHZ state is verified with the change in the
triparite mutual information, giving a negative value
ΔA∶B∶C ¼ −DA;B;C. For the Werner-W states, the condi-
tional discord for all three pairings take nonzero values,
since the measurement on A does not completely break the
quantum correlations between BC. It is well known that
the tripartite quantum systems can be divided into these two
classes, which are not related to each other via local
operations and classical communication [47].
Interestingly, the monogamy swaps sign from polygamous
to monogamous behavior at lower purities. A similar effect
was also found using a different measure in Ref. [46]. For
the bipartite states in Fig. 1(c), the conditional discords
reduce to the bipartite discords at μ ¼ 0, 1. Finally, for the
tripartite correlated state all quantities are positive
[Fig. 1(d)].

Conclusions.—We have introduced a generalization of
discord for tripartite [Eq. (8)] and multipartite [Eq. (9)]
states. One of the main features of our approach is the use
of conditional measurements. The conditioning is essential
to take into account all of the classical correlations that may
exist between subsystems. Viewing the measurements as an
operation to break the quantum correlations, optimizing
over all such measurements allows one to recover the
purely quantum contribution. We note that there is an
obvious asymmetry due the fixed ordering of the measure-
ments, which is also present in the original definition of the
bipartite discord. While symmetric definitions of discord
exist such that there is no dependence upon the choice (and
order) of measured subsystems [16,48], here we take the
point of view that we wish to have a definition consistent
with the most commonly used definition of bipartite
discord as defined in Refs. [14,15]. This asymmetry has
similarities with quantum steering which also considers a
measurement on part of a system [49]. The aims are
somewhat different in that for discord, it is to minimize
the disturbance due to measurement rather than compare to
a local hidden state theory [50]. Some applications, such as
one-way quantum computing [51], have a definite ordering
of measurements which makes our multipartite discord
naturally compatible. By identifying the various contribu-
tions to the terms which make up our definition of tripartite
discord in terms of conditional entropies, we provide an
exact decomposition [Eq. (16)]. The contributions give a
definition of a conditional discord which characterizes the
bipartite correlations ΔA;BjC;ΔA;CjB;ΔB;CjΠA in a tripartite
system, as well as a quantity related to the monogamy of
quantum correlations ΔA∶B∶C. Similar decompositions can
be made for the multipartite system, which we leave as
future work.
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