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Noise in gene expression is one of the hallmarks of life at the molecular scale. Here we derive analytical
solutions to a set of models describing the molecular mechanisms underlying transcription of DNA into
RNA. Our ansatz allows us to incorporate the effects of extrinsic noise—encompassing factors external to
the transcription of the individual gene—and discuss the ramifications for heterogeneity in gene product
abundance that has been widely observed in single cell data. Crucially, we are able to show that heavy-
tailed distributions of RNA copy numbers cannot result from the intrinsic stochasticity in gene expression
alone, but must instead reflect extrinsic sources of variability.
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Transcription is one of the canonical examples of a
stochastic process in biology; and as the first step in gene
expression, is of fundamental biophysical importance.
Stochasticity leads to significant heterogeneity between
cells subject to identical conditions [1], observable through
single-cell analysis methods that provide distributions of
transcript copy numbers across ensembles of cells [2,3]. It
is possible to model transcriptional processes using sto-
chastic master equation descriptions, reminiscent of those
in statistical physics [4,5]. The most popular models for
transcription describe the effects of intrinsic noise: sto-
chasticity arising from the Markovian nature of molecular
binding, unbinding, synthesis, and decay.
The search for the causes of heterogeneity has been

based on such models [6]; analyses were based either on the
form of the distributions [2,7–11], or on the relationships
between the moments tracked over varying conditions, or
multiple genes [12,13]. Such early studies concluded that
intrinsic noise alone could explain experimental observa-
tions; however, more recently a somewhat murkier picture
has emerged in which it has been accepted that static
observations cannot always enable accurate inference of the
underlying dynamics [14,15]. A particular challenge comes
in decoupling the effect of extrinsic noise, which has been
widely reported from direct measurements [16–18]. While
certain experimental [19] and numerical [20] studies have
demonstrated that extrinsic noise can give rise to qualita-
tively similar results to intrinsic noise alone, incorporating
these effects into mathematical descriptions has proven
difficult.
Here we present a framework in which to do exactly this,

capturing the joint effects of intrinsic and extrinsic noise
on the distributions of transcript abundance. We confirm
through analytic solutions that in many cases both the
distributions and the moment scaling behavior may be
indistinguishable from situations with purely intrinsic

noise. However we also obtain a key identifier of extrinsic
noise as a heavy-tailed copy number distribution, demon-
strating that such distributions are consistent with exper-
imental measurements.
The most widely used model for stochastic RNA tran-

scription initiation is the telegraph process, originally
detailed in [21] and discussed in recent reviews [20,22].
In the slightly generalized form we consider here, a gene is
either active or inactive, states that may be associated with
transcription factor binding [19] or mechanical effects on
transcription [23]. When active, mRNA is transcribed as a
Poisson process with rate K1, while when inactive, basal
transcription may still occur at lower rate, K0. The mRNA
degradation is modeled by a first-order Poissonian degra-
dation process with rate, δ, while switching between the
two states occurs at rates ν0 (turn off) and ν1 (turn on), see
Fig. 1(a). This leads to a Markov process for the copy
number n of the mRNAmolecules at time t and gene state i,
with an associated master equation for the probability
piðn; tÞ.

ð∀ n ≥ 1Þ∂tpiðn; tÞ ¼ −ðνi0 þ Ki þ δnÞpiðn; tÞ
þ δðnþ 1Þpiðnþ 1; tÞ
þ Kipiðn − 1; tÞ
þ νipi0 ðn; tÞ: ð1Þ

Here, i ∈ f0; 1g, i0 ¼ 1 − i and for n ¼ 0 terms involving
n − 1 are set to 0.
The master equation Eq. (1) for this “leaky gene” model

coincides with [[24], Eqs. (2),(3)], though a steady state
solution is not given there; biologically it is widely
applicable as basal expression has been reported in many
systems [25,26], including those exhibiting Polycomb
repression [27,28]. When K0 ¼ 0, the equation reduces
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to that given in [[21], Eq. (5)]. Following the generating
function method [29,30], it can be shown that the stationary
probability mass function (pmf) is given by [31]:

p̃ðnÞ ¼ 1

n!

Xn

r¼0

��
n
r

�
Kn−r

1 e−K1wr νðrÞ0

ðν0 þ ν1ÞðrÞ

× 1F1ðν0 þ r; ν0 þ ν1 þ r;−wÞ
�
; ð2Þ

where w ≔ K0 − K1, and rates are scaled so that δ ¼ 1.
Here, for real number x and positive integer n, the notation
xðnÞ abbreviates the rising factorial of x, while 1F1 denotes
the confluent hypergeometric function [32].
A useful limiting case of this generalized model is

obtained when the active state of the gene is extremely
rare (ν0 ≫ ν1), and the degradation rate is sufficiently small
(K1; ν0 ≫ δ). This model simultaneously encompasses the
two well-known extremes of very bursty transcription and
constitutive transcription, as we now explain.
The steady-state solution is again obtained by employing

the generating function method [29,30]. The resulting
stationary pmf is simply that for an independent sum of
the negative binomial and Poisson random variable, and
can be derived as [31]:

p̃ðnÞ ¼ 1

n!

Xn

s¼0

��
n
s

�
Γ½ν1=δþ ðn − sÞ�
Γðν1=δÞðn − sÞ!

× ð1 − rÞðn−sÞrν1=δ e
−K0=δKs

0

δs

�
; ð3Þ

where r ≔ ν0=ðν0 þ K1Þ. When K0 ¼ 0, corresponding
to bursty gene expression, Eq. (3) is the pmf for

NegBinðν1=δ; rÞ, agreeing with the solution of [33].
When K1 ¼ 0 (or indeed is kept constant and ν0 → ∞)
the burst height parameter r ¼ ν0=ðν0 þ K1Þ becomes 1,
and the steady state solution Eq. (3) agrees with the solution
for constitutive gene expression, PoisðK0=δÞ. Similarly,
when K0 ¼ 0, we recover the following analytical expres-
sion for the telegraph model [39,40]:

p̃ðnÞ ¼ Kn
1ν

ðnÞ
1

n!ðν0 þ ν1ÞðnÞ 1
F1ðν1 þ n;ν0 þ ν1 þ n;−K1Þ: ð4Þ

The telegraph model for transcription describes the effect
of intrinsic noise at the level of a single gene, yet the
process will often also be influenced by other sources of
variability. Such extrinsic noise has been widely observed
experimentally [16–18,41], and considered theoretically
[42–45], but incorporating these effects into the master
equations has generally proven challenging. The approach
we take is to consider the model parameters themselves
to vary between cells, and therefore to be drawn from
probability distributions [25,46] [see Fig. 1(b)]. The mRNA
copy number then follows a compound distribution,

q̃ðn; ηÞ ¼
Z

p̃ðn; θÞfðθ; ηÞdθ; ð5Þ

where θ is the vector of parameters ½ν0; ν1; K0; K1� and the
distribution f is a multivariate distribution for θ with
hyperparameters η. This model is valid provided that
parameter values are static for individual cells but vary
across an ensemble of cells according to f, or change
substantially slower (adiabatically) than the transcriptional
dynamics [34,47]. For the remainder of the Letter, when it
is clear from the context that only one rate of transcription
is being considered, we will use K in place of K0 or K1.
Typical sources of extrinsic variability for each param-

eter are given in Table I, along with comments on their
expected features. Many of these sources of variability are
related to protein abundances, which are well understood
to vary over much longer timescales than mRNA [48],
justifying the adiabatic assumption. Most extrinsic factors
may also be categorized as either “local” or “global,”
denoting whether the effect would be confined to a few
specific genes or would be widespread. As a general rule,
locally extrinsic noise may arise due to regulatory pathways
and will act on the switching rates.
Global effects are more likely to act on the rate K and

furthermore are likely to be multiplicative in nature. A result
of the central limit theorem in the log domain is that the
multiplication of positive randomvariables will tend towards
a log-normal distribution which is heavy tailed [49–51]
and consistent with experimental observations [52]; this has
important practical implications.
An alternative to the log-normal is the gamma distribu-

tion, which has also been demonstrated to arise from some

(a)

(b)

(c)

FIG. 1. The leaky telegraph model (a), captures intrinsic noise
due to inherent stochasticity and burstiness. The compound
model (b) considers that each cell is subject to different model
parameters, leading to greater variability and a heavier-tailed
distribution across the population (c).
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processes governing protein abundance [53]. If we take
K ∼ Gammaðα; βÞ, the compound distribution q̃ðn; α; βÞ
can be obtained analytically in two key cases.
When p̃ðnÞ is taken to be the telegraph model [Eq. (4)], it

can be shown that the resulting distribution coincides with
the steady-state protein number distribution found in [54].
The result is particularly striking in the special case of
constitutive transcription, where p̃ðnÞ ¼ PoisðK=δÞ. In this
situation, the compound distribution yields the negative
binomial distribution,

q̃ðn; α; βÞ ¼ NegBin

�
α;

β

1þ β

�
; ð6Þ

which is notably of the same form as that arising from very
bursty transcription, with distribution NegBinðν1=δ; rÞ.
While these specific results arise from choosing a

Gamma distributed K, this form of the distribution is
qualitatively similar to many other distributions with only
positive support and thus popular in the description of
stochastic molecular processes [55–57]. Moreover, very
similar qualitative results arise if different extrinsic dis-
tributions are chosen [31]. Thus, given a finite number of
experimental data, number distribution alone cannot dis-
tinguish between intrinsic and extrinsic sources of noise.
More specifically one cannot differentiate between con-
stitutive expression with extrinsic noise, and bursty expres-
sion without extrinsic noise, although the negative binomial
is often used as evidence for the latter [2,9].
Another key issue for comparison with experimental

data is whether or not the moments of compound distri-
butions converge [50]. We can provide simple formulæ for
all moments—provided they exist—of the copy number
distribution [Eq. (4)] under extrinsic noise on the tran-
scription rate K. Noise in K is of particular relevance, as

will become apparent in due course. Let X ¼ XK denote a
random variable from p̃ðn;KÞ [from Eq. (4)] and Y ¼ Yη a
random variable from the compound distribution q̃ðn;KÞ
[from Eq. (5)]. It can be shown that the nth moment of Y is
given by

EðYnÞ ¼
Xn

i¼1

νðiÞδ1

δiðν0 þ ν1ÞðiÞδ
Sðn; iÞEðKiÞ; ð7Þ

where Sðn; iÞ is a Stirling number of the second kind [58];
the notation xðnÞy abbreviates xðxþ yÞ;…; ½xþ yðn − 1Þ�
for real numbers x, y, and positive integer, n. It follows
from Eq. (7) that if the first two moments of the com-
pounding distribution fðK; ηÞ are known, then the mean,
variance, and Fano factor of the compound distribution
q̃ðn; ηÞ can be easily calculated. From Eq. (7), and noting
that Sð1; 1Þ ¼ Sð2; 1Þ ¼ Sð2; 2Þ ¼ 1, the Fano factor of
q̃ðn; ηÞ is given by

FFðYÞ¼ 1−
ν1

δðν0þν1Þ
EðKÞþ ν1þδ

δðν0þν1þδÞ
EðK2Þ
EðKÞ : ð8Þ

It is also possible to obtain formulæ for the nth moments
and Fano factor in the case for constitutive expression with
extrinsic noise on K, as well as in the case for bursty
expression with extrinsic noise on K. In the former, we can
alternatively obtain a formula for the Fano factor from
Eq. (8) by taking ½ν1=ðν0 þ ν1Þ� ¼ 1 (corresponding to
ν1 → ∞, or ν0 → 0). This gives

FFðYÞ ¼ 1þ 1

δ

VarðKÞ
EðKÞ : ð9Þ

It has previously been suggested that the universal
scaling between the mean and Fano factor, observed across
various organisms, can be attributed to intrinsic noise but
not extrinsic noise [12]. However, the observed scaling is
entirely consistent with the analytical solutions for the Fano
factor. Equation (8) shows that Fano factor of the com-
pound distribution q̃ðn;KÞ depends only on EðKÞ and
VarðKÞ [or equivalently EðK2Þ] and the values of the
parameters ν0; ν1; δ. Letting c denote the coefficient of
variation, σðKÞ=EðKÞ, for the noise distribution, fðK; ηÞ,
and noting that EðK2Þ=EðKÞ ¼ ð1þ c2ÞEðKÞ, Eq. (8)
becomes

1−
ν1

δðν0þν1Þ
EðKÞþ ν1þδ

δðν0þν1þδÞð1þc2ÞEðKÞ: ð10Þ

The situation EðYÞ → 0 corresponds to ν0 → ∞, which
from Eq. (10) straightforwardly gives FFðYÞ → 1.
Equation (10) allows us to make further direct compar-

isons between experimental observations and analytic
scaling expressions for purely intrinsic noise [12].
Figure 2(a) shows qualitatively identical behavior of the

TABLE I. Interpretation of the parameters in the model and
their sources of variation. “P” refers to extrinsic sources depen-
dent on protein abundances, “L” specifies a source of variability
local to one or a small number of genes, while “G” refers to more
cell-wide influences.

Interpretation Sources of variability

ν1 Activating TF binding Activating TF abundance P, L
Repressive TF unbinding Repressive TF abundance P, L
Supercoiling relief Topoisomerase abundance P, G

ν0 Activating TF unbinding Activating TF abundance P, L
Repressive TF binding Repressive TF abundance P, L

K Transcription rate RNApol abundance P, G
Sigma factor abundance P, G
Polycomb repression G, L
Resource availability G
Energy availability G

δ Degradation rate Ribonuclease abundance P, G
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Fano factor as a function of the mean mRNA copy number
for values of c close to 1. We remark that, as in [12], the
mean is varied by regulating ν0 only. It is straightforward to
demonstrate that similar agreement is also observed for the
scaling of the squared coefficient of variation [31].
We next examine the effect of extrinsic noise on the noise

scaling curve in the case for constitutive transcription,
again considering only noise on K. Here we find that the
mean copy number EðYÞ is equal to EðKÞ. Thus, from
Eq. (9), scaling the Fano factor with mean copy number is
dependent only on the noise distribution of K. If the
coefficient of variation is fixed at c as the noise distribution
onK is varied, then the Fano factor is given by 1þ c2EðKÞ,
which is linear in EðYÞ ¼ EðKÞ. This again yields quali-
tatively the same behavior, and is displayed in Fig. 2(b)
alongside mammalian data for comparison [35]. The
observations after Eq. (6) are pertinent here: with
c ¼ 1=

ffiffiffiffiffi
ν1

p
, identical noise scaling behavior arises from

the two extremes—constitutive expression with extrinsic
noise and bursty expression without noise. This had eluded
earlier studies relying on simulations alone.
Thus far, extrinsic noise, as modelled by the compound

distribution, exhibits behavior that is similar to, and, in fact,
indistinguishable from, intrinsic noise alone. We now
present a potential qualitative identifier for extrinsic noise:
we show that contrary to previous claims [40], intrinsic noise
alone never leads to a heavy-tailed copy number distribu-
tion, but find many cases in which extrinsic noise does so.
Formally, we take heavy tailed to mean that the moment
generating function (mgf) [29] is undefined for positive t,
which implies that the tail of the distribution decays more
slowly than that of the exponential distribution.
If K and δ are fixed, then the copy number is maximized

when the gene remains permanently active, which has
distribution PoissonðK=δÞ and is not heavy tailed.
Intuitively then, no compounding of ν0 and ν1 alone
can result in a heavy-tailed distribution. A more robust

argument is obtained by establishing the following inequal-
ity for the telegraph model [31]: for all positive t,

MPoisð ν1
ν0þν1

K
δÞðtÞ ≤ Mp̃ðtÞ ≤ MPoisðKδÞðtÞ; ð11Þ

where Mg denotes the mgf for distribution g. In particular,
Mp̃ðtÞ is bounded above by a Poissonian mgf that does not
depend on ν0 or ν1. Thus p̃ðnÞ itself is not heavy tailed, and
we require compounding of K or δ to make it so. On the
other hand, any extrinsic noise on K or δ that renders the
mgf for Poisf½ν1=ðν0 þ ν1Þ�ðK=δÞg undefined, will also
result in Mp̃ðtÞ being undefined and the resulting com-
pound distribution will be heavy tailed. One particular
example is if K ∼ log -normalðμ; σÞ, but our results are
general and do not depend on this particular choice. We use
the following well-known property of mixture distribu-
tions, here interpreted in the context of Eq. (5),

Mq̃ðtÞ ¼ Eθ½Mp̃ð;θÞðtÞ�: ð12Þ

From this and Eq. (11) it follows that the compounding
integrand is bounded below by

exp

�
ν1

ν1þν0

K
δ
ðet−1Þ

�
1ffiffiffiffiffiffiffiffi

σ2π
p

K
exp

�
−
ln2ðK−υÞ

2σ2

�
; ð13Þ

which diverges to infinity as K → ∞ provided t > 0. Thus
log-normal extrinsic noise on K renders the compound
distribution q̃ðn; μ; σÞ heavy tailed; cf. Fig. 2(c). These
results extend to the leaky gene model, with log-normal
noise on K1 (conditional on K0 < K1), as it is trivial that
K0 > 0 only increases the probability of large copy number
in comparison to the standard telegraph model. This result
also naturally extends to constitutive expression with log-
normal noise, since this is simply a particular case of the
leaky gene model.

(a) (b) (c)

FIG. 2. In (a), the parameters for the intrinsic noise curve are EðKÞ ¼ K ¼ 54, ν1 ¼ 0.86, and δ ¼ 1. Parameter values for the extrinsic
noise curves are given in Table I of the Supplemental Material [31]. (a) The Fano factor of the compound distribution as a function of the
mean mRNA copy number [given by Eq. (10)], varied by tuning the parameter ν0. Different values of c are plotted against the universal
noise scaling curve (intrinsic noise only) given in [12]. Data is the Plac promoter also from [12]. (b) The Fano factor as a function of the
mean copy number for constitutive expression with log-normal noise [given by Eq. (8)]. For comparison the mammalian data of [35] is
plotted. (c) Compound and telegraph models fitted to experimental data from [35]. The particular gene is highlighted in (b).

PHYSICAL REVIEW LETTERS 124, 108101 (2020)

108101-4



For bursty expression we require ν0 ≫ ν1; δ, so consider
extrinsic noise on K only. The effect of extrinsic noise here
is qualitatively different to the other cases: we observe that
the mgf for the negative binomial distribution is given by

MnbðtÞ ¼
�

r
1 − ð1 − rÞet

�
ν1=δ

;

for t < − lnð1 − rÞ ¼ − ln½K=ðK þ ν0Þ�, and is infinite
otherwise, where r ¼ ν0=ðν0 þ KÞ. Thus, the range of
positive t for which MnbðtÞ is finite approaches 0 as
K → ∞, implying that any unbounded distribution
fðK; ηÞ leads to the moment generating function of the
compound distribution

Mq̃ðtÞ ¼
Z

∞

0

MnbðtÞfðK; ηÞdK

being undefined for positive t. A wide range of extrinsic
noise models on K can therefore lead to a heavy-tailed
compound distribution for bursty transcription.
It had been noted before that transcript abundance

distributions appear heavy tailed [59–61]. Our statistical
analysis [36] finds ample evidence in many genes from
the published mammalian data in Fig. 2(b) [31,35].
Furthermore, comparing the distributions shows that a
compound model with log-normal noise fits the observed
distribution including the heavy tail in a manner that an
intrinsic noise model cannot, as exemplified in Fig. 2(c).
Noise has been intriguing and frustrating biologists to

almost equal degree. Even confined to the context of gene
expression alone, there is a vast literature. From epigenetic
factors controlling the accessibility of genes for transcrip-
tion, to understanding the role of transcriptional noise in
cell fate decision making, theoretical analysis has mostly
relied on stochastic simulations.
Crucially, we have been able to jointly consider the

effects of intrinsic and extrinsic noise and how this relates
to empirical observations including the probability distri-
bution for mRNA copy number and the observed Fano
factor scaling [12]. Further to this, we have demonstrated
that extrinsic noise is required to explain observations
of heavy-tailed distributions, which intrinsic noise alone
cannot produce. While heavy-tailed distributions have been
indicated in a number of biological contexts including in
bacterial chemotaxis [62,63], this is the first result we are
aware of describing an explanation for heavy-tailed dis-
tributions of molecular copy numbers. Given the notori-
ously noisy environment within cells and the intricate
organization of gene regulatory networks, noise extrinsic
to a given gene (or gene model) is almost certainly
ubiquitous. The framework and results provided here allow
us to get a better, more detailed handle on the origins and
implications of noise in molecular systems and beyond, and
how these should be studied experimentally.
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