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We report strong chiral coupling between magnons and photons in microwave waveguides that contain
chains of small magnets on special lines. Large magnon accumulations at one edge of the chain emerge
when exciting the magnets by a phased antenna array. This mechanism holds the promise of new
functionalities in nonlinear and quantum magnonics.
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Introduction.—The direct dipolar and exchange inter-
actions between electron spins in condensed matter create a
rich variety of magnetic order [1]. The Ruderman-Kittel-
Kasuya-Yosida [2] interaction is mediated by the nonlocal
exchange of mobile electrons. Magnons, the elementary
excitation of the magnetic order, generate the coupling
between nuclear spins [3,4]. The range of these indirect
interactions is limited by the coherence length of the
mediator that may be strongly affected by disorder.
Photons interact only weakly with condensed matter but
have long coherence lengths [5], causing interesting and
potentially applicable effects on the magnetic order.
The strong exchange interaction of spins in ferromagnets

generates a large magnetic dipole that couples strongly with
photons in high-quality microwave cavities to create a
hybridized quasiparticle—the cavity-magnon polariton [6–
9]. Combining the best features of high-speed photons and
long-lived magnons in low-loss materials such as yttrium
iron garnet (YIG), cavity-magnon polaritons are attractive
information carriers for quantum communication [6–12].
Mediated by the cavity photons with long coherence time,
two magnets can be coupled coherently and tunably over
macroscopic distances to create dark and bright states
[10–12]. The counterpart of coherent coupling—dissipa-
tive coupling—between two local spins is described by
non-Hermitian Hamiltonians [13–25], and leads to novel
physics such as topological phases [18–23] with a non-
Hermitian skin effect [18,19], superradiance and subra-
diance [26–31], as well as critical behavior beyond the
standard paradigms [32–34], but has not yet been explored
in magnetic systems.
In this Letter, we address the new functionalities that

arise when magnetic particles couple with microwave
modes that propagate only in one direction (chiral cou-
pling). The excited state of a magnet on a line then affects
only the magnets on one side without backaction. Below,
we demonstrate that such chirality can be realized by

special positions in a waveguide at which the precession
direction of the photon magnetic field is locked to its wave
vector [35–40]. Microwave devices such as nonreciprocal
band rejection filters operate by placing a single ferro-
magnet on special points in waveguides with circular
polarization [41–43]. Here we focus on the collective
non-Hermitian dynamics of an ensemble of magnets as
shown in Fig. 1, which is loaded with a chain of magnets
close to a special line that can individually be addressed by
local (coil) antennas [10]. The antenna array allows con-
trolled excitation and detection of individual magnets as
well as collective modes that is not possible by a global
waveguide input and output. We predict that a chiral
magnon-photon coupling in such an array leads to magnon
edge states on one side of the chain. A large magnon
amplitude can be generated by relatively weak excitation
power, so our scheme is an alternative to parametric
pumping [42,44]. We envision that similar effects occur

FIG. 1. Chain of magnetic spheres with period d in a micro-
wave waveguide. The chain and waveguide are parallel to the ẑ
axis and magnetizations are oriented along ŷ by a magnetic field
Hy. Every magnet interacts with all other magnets to the right
(ΣR) and left (ΣL). Small coils attached to each magnet can excite
and detect the local magnon accumulation.
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when a chiral interaction between magnets is mediated by
other quasiparticles such as magnons [45–47], conduction
electron spins [48], and phonons [49,50]. This Letter is
accompanied by a longer paper [51] that exposes the basic
theory and focuses on the microwave scattering.
Formalism.—We consider a waveguide along the ẑ

direction with a rectangular cross section and model it
by Maxwell’s equations with metallic boundary conditions.
Even though the predicted effects obey classical physics,
we use a quantum formalism for technical convenience as
well as future research into quantum statistical effects. To
this end we expand the Fano-Anderson Hamiltonian ĥem þ
ĥm þ ĥint [52–54] into propagating photon operators p̂k
with mode number k and local magnon operators m̂j with
magnet index j.
The microwave magnetic-field operator ĤðrÞ ¼R
HkðρÞeikzp̂kdk=

ffiffiffiffiffiffi
2π

p þ H:c:, where HkðρÞ is a wave-
guide eigenmode at transverse coordinate ρ ¼ ðx; yÞ [35]
(and similarly for the electric field Ê). The electromagnetic
energy ĥem ¼ R ½ϵ0ÊðrÞ · ÊðrÞ=2þ μ0ĤðrÞ · ĤðrÞ=2�dr,
where ϵ0 and μ0 are vacuum permittivity and permeability,
then leads to the Hamiltonian ĥem ¼ R ℏΩkp̂

†
kp̂kdk. We

focus on the lowest transverse TE10 mode with dispersion
Ω2

k=c
2 ¼ k2 þ ðπ=aÞ2, polarized along and uniformly dis-

tributed over the ŷ direction and with standing wavelength
2a in the x̂ direction (see Fig. 1 with a > b).
The waveguide is loaded with N identical YIG spheres

with gyromagnetic ratio −γ, saturation magnetization Ms,
and volume Vs at rj¼ρþðj−1Þdz, with j ∈ f1; 2;…; Ng,
where d is the (equidistant) spacing between the spheres.
The submillimeter spheres are much smaller than the
photon wavelength of the order of centimeters, so they
can be treated as point particles. The static magnetic field
Happ ¼ ð0; Happ; 0Þ in Fig. 1 is sufficiently strong to
saturate the magnetization in the ŷ direction. The wave-
guide photons couple to the anticlockwise uniform
magnetization precession around the magnetic field
(Kittel mode). In second quantization M̂j;z − iM̂j;x ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ℏγMs=Vs

p
m̂j, where M̂j;δ is the δth component of the

magnetization amplitude in the jth magnet and −γ the
gyromagnetic ratio. Then the magnetic free energy
−μ0

R ½HappðrÞM̂yðrÞ þ ĤeffðrÞ · M̂ðrÞ�dr, with effective
magnetic field ĤeffðrÞ generated by the dipolar and
exchange interactions, reduces to that of a harmonic
oscillator for each magnet ĥm ¼ ℏωm

P
N
j¼1 m̂

†
j m̂j, where

ωm ¼ μ0γHapp is the Larmor precession frequency.
The photons and magnons are coupled by the Zeeman

interaction ĥint ¼ −μ0
R
ĤðrÞ · M̂ðrÞdr, which here

reduces to

ĥint ¼
X
j

Z
dkffiffiffiffiffiffi
2π

p ½ℏgjðkÞp̂km̂
†
j þ H:c:�: ð1Þ

The coupling constant gjðkÞ ¼ g̃ðkÞeikðj−1Þd, where

g̃ðkÞ ¼ −μ0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γMsVs

2ℏ

r
½Hk;zðρÞ − iHk;xðρÞ�; ð2Þ

depends on the position of the magnetic particles. Our
treatment is perturbative in the sense that we disregard the
disturbance of the waveguide fields by the magnetic
spheres, which is a good approximation when the latter
are sufficiently small [12].
The magnons interact resonantly with photons with wave

numbers near k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m=c2 − π2=a2

p
. The magnetic field

of TE photons is polarization-momentum locked; i.e.,Hk;−
depends on the sign of k [35–40] as worked out in the
Supplemental Material for the TE10 mode [55]. A magnet at
a position where H−k0;− is zero but Hk0;− is finite can
radiate only into the positive ẑ direction. For the TE10 mode
this occurs for all y and cot ðπx=aÞ ¼ −

ffiffiffiffiffiffiffi
k0a

p
π.

Figure 2 is a snapshot of the magnetic-field distribution.
The chiral lines for arbitrary cross sections [35] have to
computed numerically.
The effective coupling between spheres can be modeled

by integrating out the photon fields (for details, see
Ref. [51]) in terms of the equation of motion for the vector
of magnetizations M̂ ¼ ðm̂1;…; m̂NÞT [56,57]:

dM̂=dt ¼ −iH̃effM̂ − T̂ : ð3Þ

T̂ ¼ T̂ w þ T̂ l is the external torque by the waveguide
photons,

T̂ w ¼ i
Z

dkffiffiffiffiffiffi
2π

p g̃ðkÞp̂k;ine−iΩktðeikd;…; eikNdÞT; ð4Þ

and the local antennas T̂ l ¼ ½P̂1ðtÞ;…; P̂NðtÞ�T . In the non-
Hermitian matrix H̃eff¼ω̃þΣ, ω̃jl≡ω̃mδjl¼ωmð1−iαGÞδjl

FIG. 2. Snapshot of magnetic-field vector distribution of the
TE10 waveguide mode over one wavelength λ. The green and red
dashed lines indicate the chiral lines with (opposite) circular
polarization.
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with Gilbert damping constant αG, and the photon-
mediated self-energy

Σjl ¼ −i

8<
:

ðΓL þ ΓRÞ=2 j ¼ l

ΓReik0ðj−lÞd j > l

ΓLeik0ðl−jÞd j < l;

ð5Þ

where ΓR ¼ g̃2ðk0Þ=vðk0Þ, ΓL ¼ g̃2ð−k0Þ=vðk0Þ, and
vðkÞ ¼ jkjc2=ωm is the photon group velocity. The self-
energy contributes to the dissipative and long-range cou-
pling between any two magnets. The chiral coupling
appears when ΓL ≠ ΓR. The geometrical phases such as
k0ðj − lÞd are caused by the photon propagating from the
jth to the lth magnet. The modulus of the self-energy does
not depend on distance because we assume sufficiently
high quality of the waveguide and magnets.
Collective modes.—In the non-Hermitian Hamiltonian

H̃eff , the right eigenvectors of Σ, say, fψζg with corre-
sponding eigenvalues fγζg, satisfy ðγζ − ΣÞψζ ¼ 0 for a
delocalized mode with label ζ ∈ f1;…; Ng. Here Re½γζ� is
the resonance frequency and Im½γζ� the reciprocal lifetime.
fψζg is normalized by ψT

ζPψζ ¼ 1 with Pij ¼ δiþj;N

[23,58]. H̃eff consists of a Hermitian H̃h ¼ ðH̃eff þ
H̃†

effÞ=2 and non-Hermitian part H̃nh ¼ ðH̃eff − H̃†
effÞ=2.

M̂ can be expanded into generalized Bloch states
Ψ̂κ ¼

P
N
j¼1 e

iκzjm̂j=
ffiffiffiffi
N

p
with zj ¼ ðj − 1Þd and complex

“crystal momentum” κ. Two Bloch states Ψ̂k0 and Ψ̂−k0

diagonalize H̃nh (recall k0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2
m=c2 − π2=a2

p
): 

νþ i
2
ΓLN

i
2
ΓR

1−e2ik0Nd

1−e2ik0d

i
2
ΓL

1−e−2ik0Nd

1−e−2ik0d νþ i
2
ΓRN

! 
Ψ̂k0

Ψ̂−k0

!
¼ 0: ð6Þ

The sum of the eigenvalues νþ þ ν− ¼ −iNðΓL þ ΓRÞ=2 is
the total radiative decay rate, which scales with number of
magnets. These two states are called “superradiant” or
“bright,” while the remaining (N − 2) states are “subra-
diant” or “dark” with initially infinite radiative lifetime.
The coherent coupling by H̃h mixes all states, but sub-
radiant states with enhanced lifetimes persist, as shown
below by combined analytic and numerical treatments.
The ansatz of extended Bloch states Ψ̂κ leads to the

closed expression for the Heisenberg equation [27]

dΨ̂κ=dt ¼ −iωκΨ̂κ − ΓLgκΨ̂k0 þ ΓRhκΨ̂−k0 ; ð7Þ

in which

ωκ ≡ −i
ΓR

2

1þ eiðκþk0Þd

1 − eiðκþk0Þd þ i
ΓL

2

1þ eiðκ−k0Þd

1 − eiðκ−k0Þd
; ð8Þ

with gκ ¼ 1=½1 − eiðκ−k0Þd� and hκ ¼ eiðκþk0ÞNd=
½1 − eiðκþk0Þd�. In an infinite chain (or a closed ring) Ψ̂κ

would be a solution. The boundary conditions of the finite

system can be fulfilled by superposition of two states
with momenta κ and κ0 at the same frequency ωκ ¼ ωκ0.
The additional terms appearing in Eq. (7) are canceled by
enforcing

gκhκ0 ¼ gκ0hκ; ð9Þ

leading to eigenstates α̂ζ ¼
P

j ϕ
�
ζ;jm̂j ∝ ðgκΨ̂κ0 − gκ0Ψ̂κÞ.

The wave functions and spectra then read

ψζ;j ∝ gκ0eiκzN−j − gκeiκ
0zN−j ; γζ ¼ ωκ: ð10Þ

ωκ diverges at κ ¼ �k0. On the other hand, the radiative
damping ∼Imωκ is minimized for, say, κ ¼ κ�. Neither
κ ¼ �k0 nor κ� solve Eq. (9), but these states reflect the
superradiance and subradiance well known in quantum
optics [26–31]. The former corresponds to the edge states
of H̃eff with enhanced magnon amplitudes and damping,
while the latter are weakly coupled delocalized standing
waves, as demonstrated in the following.
The wave numbers κ� of the extremal points ωκ� lead to

the vanishing group velocity around which the subradiant
modes are expected, which obey

κ�d ¼ arcsin
ΓR − ΓLffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Γ2
R þ Γ2

L − 2ΓRΓL cosð2k0dÞ
p

− arctan
ΓR − ΓL

ðΓR þ ΓLÞ tanðk0dÞ
: ð11Þ

arcsin x is a two-valued function in the first Brillouin
zone ½−π=d; π=d� and we have two extremal points
(see Supplemental Material [55]). The two degenerate
solutions close to each extremum κ�¼κ��δ solve gκþhκ−¼
gκ−hκþ . For small δ,

δζ ¼
ζπ

Nd

�
1 −

i
N

sin ðk0dÞ
cos ðκ�dÞ − cos ðk0dÞ

�
; ð12Þ

where ζ ∈ N. With Eq. (10), the wave function and
dispersion of these subradiant states read

ψζ;j ≈ −2i
eiκ�zN−j

1 − eiðκ�−k0Þd
sinðδζzN−jÞ;

ωζ ¼ ωκ� þ
sinðk0dÞ

cosðκ�dÞ − cosðk0dÞ
ΓRðδζdÞ2=2

1 − cos½ðk0 þ κ�Þd�
;

ð13Þ
where δζ ∝ ζ=ðNdÞ. These solutions are nearly standing
waves with long radiative lifetimes and are only weakly
affected by chirality.
We have to numerically calculate the solutions for κ

close to�k0, i.e., κ ¼ k0 þ η and κ0 ¼ −k0 þ η0, in which η
and η0 are small complex numbers. Im η and Im η0 govern
the decay of the states at the two edges. With chirality, only
one of them is important, which causes a concentration at
one edge of the chain.
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As an example, we consider a rectangular waveguide
with dimensions a ¼ 1.6 cm and b ¼ 0.6 cm, and 20 YIG
magnetic spheres with radius rc ¼ 0.6 mm and αG ¼ 5 ×
10−5 [54]. ωm=ð2πÞ ¼

ffiffiffi
3

p
c=ð2aÞ ¼ 16.2 GHz is tuned to

correspond to the photon momentum k0 ¼
ffiffiffi
2

p
π=a of the

lowest TE10 mode. By varying the position and size
of the magnets, we may tune the magnon-photon inter-
action Eq. (5), here ΓR;L=ð2πÞ ∈ ð0; 20Þ MHz, while
αGωm=ð2πÞ ∼ 1 MHz and chiralities 0 < ΓL=ΓR < ∞.
k0d ¼ 3π=5 corresponds to an intermagnet spacing d ¼
a=ð5 ffiffiffi

2
p Þ ≈ 0.6 cm and Nd ≈ 12 cm.

Magnon accumulation.—Figure 3 is a plot of the energy
spectra and magnon accumulation (squared wave func-
tions). Figure 3(a) shows that the real and imaginary
components of the eigenenergy γζ, scaled by Γa ¼
ðΓL þ ΓRÞ=2, are approximately distributed on an ellipse
in the complex plane that depends only weakly on the
chirality. The solutions with long lifetimes are clustered
around the frequencies ωκ� . It is negative in Fig. 3(a) but
depends strongly on k0. Modes with Imγ > Γa (< Γa) are
superradiant (subradiant) with radiative lifetime shorter
(longer) than that of an isolated magnet. The decay rates
of all eigenstates are sorted and plotted with integer labels
ζ ∈ f1; 2;…; 20g in Fig. 3(b). Here, the typical radia-
tive lifetime of the most superradiant state (ζ ¼ 20) is
20–70 MHz for the three chiralities.

The magnon accumulation jψζ;jj2 of the most short-lived
state [ζ ¼ 20 in Fig. 3(b)] is plotted in Fig. 3(c). When
ΓR ¼ ΓL, the state is symmetrically localized close to both
edges (red solid curve), but with increasing chirality, the
distribution becomes asymmetrically skewed to one boun-
dary. When ΓR < ΓL (ΓR > ΓL), the boundary state is
localized at the left (right) boundary of the chain. The
enhanced dynamics associated to large magnon numbers
causes superradiance. The most subradiant states, on the
other hand, have magnon accumulations ∼j sin ðζπj=NÞj2,
with small amplitudes at the two boundaries, as shown
in Fig. 3(d), and are only weakly affected by chirality. A
weak higher harmonic reflects the bare photon wave-
length ∼2π=k0.
We can now expand the magnetization M̂ðtÞ ¼P
N
ζ¼1 α̂ζðtÞψζ into the above eigenstates with coefficients

α̂ζðtÞ ¼ ϕ†
ζM̂ðtÞ. For the local input vector at common

frequency ωin, hT̂ lðtÞi ¼ ie−iωintðP1; P2;…; PNÞ and
waveguide photon feed hT̂ wi ¼ 0 (we discuss the case
with hT̂ wi ≠ 0 and hT̂ li ¼ 0 in Ref. [51]), the coherent
magnetization amplitude

hM̂ðtÞi ¼ −i
X
ζ

ðPψζÞThT̂ lðtÞi
ωin − ω̃m − γζ

ψζ: ð14Þ

We are looking for a large magnon accumulation at one
edge of the chain due to the chirality. Since ðPψζÞT ¼
ðψζ;N;ψζ;N−1;…;ψ1Þ oscillates between spheres with fixed
phase, the vector product ðPψζÞThT̂ lðtÞi can be large for a
localized edge state ζ� on the right when the input from
the local antennas matches its phase and frequency. To
match the phases of the edge states, we consider local
power injection of the form hT̂ lðtÞi ¼ iPð1; eiϕ;…;
eiðN−1ÞϕÞ exp½−iðωm þ Reγζ� Þt�, in which the optimal phase
depends on the number of magnets but ϕ → k0d for
sufficiently long chains.
Figure 4(a) shows that switching on the local antennas

for ΓL=ΓR ¼ 0.1 and phase ϕ optimally chosen to be
∼0.35π leads to an enhanced accumulation on the right
side. This choice of ϕ is out of phase with the subradiant
states that are therefore hardly excited [see the blue curve in
Fig. 4(a)]. Figure 4(b) is the accumulation on the rightmost
sphere as a function of chirality, which is enhanced more
than 100-fold by tuning the chirality ΓL=ΓR → 0. In this
limit all frequencies become degenerate, but individual
modes can still be accessed by the phased array. With fixed
chirality, the amplitude jMN j of the edge state with ζ ¼ N
diverges with the number of magnets as ∝

ffiffiffiffi
N

p
. On the

other hand, this state is also superradiant, with lifetime that
decreases with the number of magnets, approximately
∝ 1=N. Therefore, with fixed power input per coil, the
accumulated magnetization jMN j at the boundary is esti-
mated to be constant, while the calculations show a slow
decrease with N [55].
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FIG. 3. Energy spectra and wave functions of the magnet
chain. (a) Real and imaginary components of eigenenergies
γ ¼ ðν − ω̃mÞ scaled by Γa ¼ ðΓL þ ΓRÞ=2. Red circles, orange
crosses, and blue squares encode the chiralities ΓL=ΓR ¼ 1, 0.5,
and 0.25, respectively. Black crosses indicate two values of
ωκ�=Γa when ΓL=ΓR ¼ 0.25. (b) All 20 eigenstates sorted by
increasing decay rates. (c) Magnon intensity distribution of the
most short-lived state with ζ ¼ 20 in (b). (d) Magnon intensity
distribution for the longest living states with ζ ¼ 1, 2 in (b).
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Conclusions.—In conclusion, the interaction between
magnons and photons can be chiral and tunable by
strategically positioning small magnets in a waveguide.
We predict a strong imbalance of magnon populations in a
chain of magnets in which the dissipative and long-range
nature of the coupling can strongly enhance the magnon
intensity at the edges that can be much higher than those
excited by conventional ferromagnetic resonance. On the
other hand, the magnon numbers of the magnets in the
center of the chain are only weakly affected.
Our formalism can be extended into the quantum regime

of magnons [26–30]. The strong coupling between mag-
nons and photons in a microwave waveguide [54] opens the
new perspective of magnonic quantum emitters [59], which
might help circumventing the harsh experimental environ-
ment such as extremely low temperature and fine control
required for cold atom system. We also find analogies with
chiral optics, in which the coupling between light and
emitters depends on the propagation of light and polari-
zation of the local emitters [36]. The chiral coupling
between emitters is promising in achieving quantum state
transfer between qubits via the magnonic chiral quantum
channel introduced here.
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