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Recent developments in twisted and lattice-mismatched bilayers have revealed a rich phase space of
van der Waals systems and generated excitement. Among these systems are heterobilayers, which can offer
new opportunities to control van der Waals systems with strong in plane correlations such as spin-orbit-
assisted Mott insulator α-RuCl3. Nevertheless, a theoretical ab initio framework for mismatched
heterobilayers without even approximate periodicity is sorely lacking. We propose a general strategy
for calculating electronic properties of such systems, mismatched interface theory (MINT), and apply it to
the graphene=α-RuCl3 (GR=α-RuCl3) heterostructure. Using MINT, we predict uniform doping of 4.77%
from graphene to α-RuCl3 and magnetic interactions in α-RuCl3 to shift the system toward the Kitaev point.
Hence, we demonstrate that MINT can guide targeted materialization of desired model systems and discuss
recent experiments on GR=α-RuCl3 heterostructures.
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New capabilities for synthesizing atomic scale hetero-
structures with lattice-mismatched van der Waals materials
have opened the floodgates to an infinite array of possibil-
ities. Among them are twisted structures of identical
monolayers, such asmultilayer graphene [1,2] and transition
metal dichalcogenides [3] (TMDs), as well as structures
involving two distinct monolayers, such as TMD hetero-
bilayers [4,5] and the GR=α-RuCl3 heterostructure [6,7].
These capabilities offer a new control parameter to design
new systems. Unfortunately, traditional ab initio techniques
for calculating the electronic structure of materials are
powerless when the lattice mismatch between two crystals
leads to the absence of periodicity [8,9].
For twisted graphene bilayers, moiré materials offer a

superlattice and the community poured on theoretical efforts
to construct effective tight-binding models [10–15] and
develop specialized techniques for solving those models in
extended, aperiodic systems [11,16]. Pioneering efforts have
also been made to develop perturbation theory for interlayer
coupling that is homogenized in the in plane directions [9],
though actual calculations within this latter approach also
have required the use of non-self-consistent tight-binding
models. Without self-consistency, such tight-binding-based
approaches are limited to homobilayers in that they cannot
account for effects such as screening and charge transfer.
On the other hand, heterobilayers without superlattice

structure are lacking a theoretical framework outside of
making supercells [17], which are computationally costly
and introduce significant strain. Of our particular interest is
the GR=α-RuCl3 system. α-RuCl3 (RuCl3) is a layered spin-
orbit-assisted Mott insulator that lies very close to forming
the exotic quantum spin liquid ground state [18–25]. Hence
heterostructuring may offer a tantalizing possibility of

exploring the phase diagram and doping the quantum spin
liquid. However, the large mismatch [see Fig. 1(a)] rules out
meaningful superlattice formation and the work-function
difference (ϕr ¼ 6.1 eV for α-RuCl3 [26] and ϕg ¼ 4.6 eV
for graphene [27]) suggests charge transfer.
We introduce a new framework for fully self-consistent

electronic-structure studies of lattice-mismatched atomic
heterostructures called mismatched interface theory
(MINT). We then apply this approach to carry out full,
direct density-functional theory studies of the GR=RuCl3
heterostructure and predict that electrons from the graphene
layer dope RuCl3 while moving the system closer to the
Kitaev point [29] [see Fig. 1(b)]. RuCl3 has been hypoth-
esized to lie in the spin liquid regime at this phase

FIG. 1. (a) A GR=α-RuCl3 bilayer. (b) TheMINT results for our
GR=α-RuCl3 system (green star) added to the Luttinger-Tisza
phase diagram from Ref. [28] with the red diamond representing
the ground state of plain RuCl3. ZZ denotes the zigzag anti-
ferromagnetic phase, AFM is the regular antiferromagnet, FM is
the ferromagnet, “120” is the 120°-ordered phase, and I is the
incommensurate order. TheKitaev point at the origin is denotedK.
(c) Calculated band structures of graphene (black and gray) and
α-RuCl3 (green).
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point [28], where spin correlation functions beyond near-
est-neighbor (NN) vanish and, on a given NN bond, only
the components of spins matching the bond type remain
correlated [30].
Pure RuCl3 has been intensely studied since it was

recognized to be a candidate system to materialize the
honeycomb lattice Kitaev model [29] with extremely aniso-
tropic spin-spin interaction among jeff ¼ 1=2 pseudospin
moments on the Ruthenium sites. In the bulk crystal, the
edge-sharing RuCl6 octahedra form two-dimensional RuCl3
layerswithweak interlayer vanderWaals coupling.Although
there are signs of Kitaev physics in the bulk system, it orders
into a zigzag antiferromagnet at TNéel [19–24] and evidence
of Kitaev quantum spin liquid physics is only seen at
temperatures above the ordering temperature [21,23] or under
a magnetic field, which suppresses ordering [20,22–25].
Kim et al. [28] obtained an effective model that captures
competing interactions leading to the zigzag and other nearby
orders from ab initio studies [31]

HJKΓ ¼
X

hiji∈αβðγÞ
½KSγi S

γ
jþJSi ·SjþΓðSαi Sβj þSβi S

α
j Þ�; ð1Þ

where i, j designate theRu3þ sites and theSαi are components
of the jeff ¼ 1=2 pseudospin operator Si, and αβðγÞ labels a
bond on which the spin direction γ is fixed. They further
placed themodel parameters relevant for RuCl3 in the zigzag-
ordered phase close to the ferromagnetic- and 120°-ordered
state in a classical phase diagram based on Luttinger-Tisza
analysis [32] [see the reproduced phase diagram in Fig. 1(b)].
However, little is known about how tomove the system closer
to the Kitaev point at the origin. Here we will use MINT to
extract the tight-binding parameters for the graphene-RuCl3
heterostructure to obtain the Kitaev (K), Heisenberg (J), and
symmetric off-diagonal exchange coupling (Γ) constants.
Mismatched interface theory.—Electronic-structure

theory offers two broad sets of approaches for treatment
of either isolated or periodic systems, respectively.
Standard praxis for treating periodic structures within
isolated-system methods is to construct large clusters of
periodic material. Conversely, to treat aperiodic structures
within periodic methods, one constructs large, periodic
“supercells” containing the aperiodic structure. Both meth-
ods depend on the nearsightedness of electronic matter
[33,34] to ensure convergence toward exact behavior as
the size of the calculation increases to infinity. This well-
established principle is reflected in the mathematics under-
lying the recently developed tight-binding-based methods
for twisted bilayers [14,16].
We here demonstrate for the first time that a simple

combination of the supercell and cluster approaches allows
treatment of incommensurate interfaces directly with stan-
dard density-functional theory softwarewithout the need for
specialized techniques or reduction to non-self-consistent
tight-binding models. We find, moreover, that nearsighted-
ness ensures sufficiently rapid convergence that the

calculations for our system of interest are quite practical.
The basic approach, illustrated in Fig. 2, begins with a large,
periodic supercell of the material system of primary interest
S (e.g., single-layer α-RuCl3.) Next, we place into this
supercell clusters C of the material from the second sub-
system, with terminating groups such that no bonds are left
free and adjacent cluster images do not interact (e.g.,
hydrogen-terminated graphene flakes).
Finally, we study convergence as the cluster size is

increased. Nearsightedness then ensures that, sufficiently
far from the boundary of the cluster, both materials behave
just as they would for a truly infinite interface. Moreover, as
the cluster grows, it eventually samples all possible registries
with the other material. Appropriate finite-size scaling of
thermodynamically intrinsic quantities then enables extrac-
tion of the behavior of the infinite interface. As a matter of
practice, following past tight-binding work [16], conver-
gence with respect to sampling over registries (and even
local rotational disorder) can be accelerated in systems with
large moiré patterns by employing smaller clusters and
averaging over different relative positions and orientations.
Below, we present the first fully self-consistent density-
functional theory (DFT) calculations carried out within this
approach.
The final step of MINT is to use the “MINT representa-

tion” to make predictions for the electronic structure and
magnetic interactions of the heterostructure. We include
not only charge transfer, but also the effects of strain by
extrapolating the changes in bond length from the flake
calculations. The benefit of the MINT representation is that
it is a system that effectively models mismatched interfaces
that is, nevertheless, well suited to all standard ab initio
methods with periodic boundary conditions. For example,
one can carry out the ab initio total-energy calculations for
different magnetically ordered states to probe magnetism.
We can also calculate the electronic structure of the MINT
representation to obtain effective models for analyses suited
to correlated electron methods.
Computational methods.—All ab initio calculations

were carried out within the total-energy plane wave
density-functional pseudopotential approach, using
Perdew-Burke-Ernzerhof generalized gradient approxima-
tion functionals [35] and optimized norm-conserving

FIG. 2. The terminated cluster C and the supercell S.
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Vanderbilt pseudopotentials in the SG15 family [36]. Plane
wave basis sets with energy cutoffs of 30 hartree were used
to expand the electronic wave functions. We used fully
periodic boundary conditions and a single unit cell of
RuCl3 with a 6 × 4 × 1 k-point mesh to sample the
Brillouin zone. Electronic minimizations were carried
out using the analytically continued functional approach
starting with a LCAO initial guess within the DFTþþ
formalism [37], as implemented in the open-source code
JDFTx [38] using direct minimization via the conjugate
gradients algorithm [39]. All unit cells were constructed to
be inversion symmetric about z ¼ 0 with a distance of ≈60
bohr between periodic images of the RuCl3 surface, using
coulomb truncation to prevent image interaction.
Application of MINT to graphene=α-RuCl3—Here, we

consider α-RuCl3 as the system of interest S and employ
hydrogen-terminated graphene clusters C [planar CH10H8,
C14H10, C16H10, C24H12, and C30H16 as in Fig. 3(a)]. To
calculate the expected charge transfer in the macroscopic
system, we first determine charge transfer for each element
of the convergence sequence and then scale to the transfer
expected for a full graphene layer L by multiplying by
NðLÞ=NðCÞ, the ratio of the (incommensurate) number of
carbon atoms expected for a full graphene layer NðLÞ and
the number in each cluster. Figure 3(b) shows that the
intrinsic quantity δ (scaled charge transfer per Ru atom
in S) converges reliably and rapidly to a value of about
4.77% e=Ru (electrons per ruthenium).
To test the sensitivity of the calculation with respect to the

relative displacements, we have integrated over different
relative displacements for a heterogeneous incommensurate
bilayer for the first time in a full density-functional theory

context. As a matter of expediency, we considered the CH6
cluster and sampled the primitive d ¼ 2-dimensional sur-
face cell of the α-RuCl3 with 12 CH6 configurations:
six positions in the plane covering the unit cell and two
rotations of the CH6 at each position (see Supplemental
Material [40]). We found the averaged doping to be 4.41%
e=Ru compared to our original estimate for CH6 of 4.57%
e=Ru. This demonstrates that convergence with respect to
relative displacement is extremely rapid in this system.
Consequently, for all results below, we sample a single
relative displacement only.
We next explore the effect of uniaxial pressure on charge

transfer. Holding the C cluster at a fixed distance from the
α-RuCl3 system and computing pressure from the resulting
force per unit area, we find that δ increases monotonically
with compression and is much more responsive to positive
than negative pressure (Fig. 4). (For these data we used
CH10H8, as it already exhibits good convergence.) We find
perpendicular pressure to be an effective tool for control-
ling doping of GR=RuCl3.
Effects on magnetism.—To understand the effect of

heterostructuring on magnetism, we consider the charge
transfer predicted by MINT added to a single layer of
α-RuCl3 placed in an effective medium of dielectric
constant 1 that models screening with a debye length
3 Å, as implemented within JDFTx [38,41]. This allows us to
simulate the doping due to graphene, while suppressing
unwanted interaction between α-RuCl3 planes. We first
perform the ab initio total-energy calculations for the
different magnetic ground states.
For pure α-RuCl3, various ab initio studies taking spin-

orbit coupling into account have found that the two lowest
energy states are ferromagnetic- and zigzag-ordered states
that are extremely close in energy. Indeed, we find the
energy difference between the ferromagnetic state and the
zigzag state to be far less than our energy resolution for
pure α-RuCl3 [see Fig. 5(a)]. On the other hand, the MINT
representation for GR=RuCl3 displays a dramatic change in
this energy hierarchy. First, the ferromagnetic state expe-
riences a large increase in relative energy. Second, the
antiferromagnetic state comes closer to the zigzag state,
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FIG. 3. (a)Visualizationof theRuCl3-carbon systems considered
in our study (top view). (b) Convergence of predicted doping δ of
the avatar heterostructures with successively more “graphenelike”
clusters. The red dashed line represents the value of δ extrapolated
from the cluster calculations. Red boxes are the results from
calculation and the solid curve is power law fit.
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which remains the lowest energy state [see Fig. 5(b)]. These
results indicate that GR=RuCl3 should be closer to the
AFM state in the phase diagram of the effective model
in Eq. (1).
The full description of GR=α-RuCl3 requires under-

standing of how charge transfer affects the interatomic
overlaps that enter the strong coupling expansion of the
Kanamori Hamiltonian [28] that results in the magnetic
Hamiltonian of Eq. (1). In addition, one should consider
how to describe the doped magnetic system with the now
more nontrivial Hamiltonian. This second step is beyond
the scope of this Letter. Nevertheless, we will investigate
how the parameters of the magnetic interactions J,K, and Γ
are expected to change. To accomplish this, we extract the
tight-binding parameters (intra-t2g and nearest-neighbor
t2g − eg orbital overlaps) from our ab initio calculations
on the MINT representation using the maximally localized
Wannier orbital method [42]. We estimate the on-site
Coulomb interaction U following Ref. [43]. We then use
the expressions for the coupling constants in terms of these
parameters given in Ref. [44]. The resulting estimates
of the NN exchanges give J=K ≃ −0.3 and Γ=K ≃ 0.3
for the doped system, corresponding to the green star on the
Luttinger-Tisza phase diagram in Fig. 1(b) [28]. When
compared to the previously obtained values of J=K ≃ −0.7
and Γ=K ≃ 0.7 for plain RuCl3, this clearly indicates that
the charge transfer from graphene to RuCl3 has moved the
system closer to the Kitaev point [45].
Summary and outlook.—In summary, we have intro-

duced MINT: a new framework for studying lattice-
mismatched atomic heterostructures ab initio. It is a two
step process of (1) constructing the MINT representation by
combining the cluster and supercell methods to exploit the
principle of nearsightedness of electronic matter and then
(2) using this representation to study the electronic struc-
ture of mismatched interfaces with full self-consistency in
the description of charge transfer across a heterogeneous
incommensurate bilayer. We then applied MINT to the
GR=α-RuCl3 system that has recently been realized, find-
ing results that quickly converge to the overall doping of
4.77% electron per Ru atom. A rough estimate based on the

work-function difference yields a doping level that is about
half our prediction [46]. This rapid convergence provides
an internal check of how well the members of the MINT
sequence converge to the full GR=α-RuCl3 system. We also
predict this doping to increase readily under positive
perpendicular pressure. Finally, we predict the doping to
bring the GR=α-RuCl3 system much closer to the Kitaev
point in the phase diagram in terms of effective exchange
parameters. Interestingly, the enhancement in conduction
observed in two recent experiments [6,7] is consistent with
our prediction.
The implications of our results are twofold. First, we

presented the first framework for studying mismatched
interfaces in a systematic yet efficient manner. Although
the MINT is a new framework, it is based on a simple
principle and it uses established and widely available
standard ab initio methods in each of its steps. Hence,
MINT is versatile and accessible and we anticipate the
application of this approach to produce many more
interesting results in mismatched interface systems pre-
viously out of reach of ab initio studies. Second, using
MINT we found the GR=α-RuCl3 system to accomplish
two sought-after controls: bringing the RuCl3 closer to the
Kitaev point and doping. To the best of our knowledge, this
is the only known case of control that can make the elusive
quantum spin liquid physics accessible to RuCl3 without a
magnetic field. Our results lay the field wide open to future
experiments on GR=α-RuCl3 to be compared to MINT
predictions. Moreover, it will be interesting to study other
heterostructures involving α-RuCl3 partnered with different
van der Waals systems and continue to explore this
uncharted territory.
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