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We propose a new method to measure atomic scale dynamics of nanoparticles from experimental
high-resolution annular dark field scanning transmission electron microscopy images. By using the so-
called hidden Markov model, which explicitly models the possibility of structural changes, the number of
atoms in each atomic column can be quantified over time. This newly proposed method outperforms the
current atom-counting procedure and enables the determination of the probabilities and cross sections for
surface diffusion. This method is therefore of great importance for revealing and quantifying the atomic
structure when it evolves over time via adatom dynamics, surface diffusion, beam effects, or during in situ
experiments.
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In the field of atomic resolution electron microscopy,
quantitative methods are becoming increasingly important
for a reliable structure determination of a nanomaterial in
three dimensions [1–6]. However, such quantitative analysis
tools largely focus on a stationary structure as a result of
which the insight into the dynamics is lacking. Since the
atomic structure of a nanomaterial can evolve over time via
adatom dynamics [7,8], surface diffusion and reconstruction
[9–13], beam effects [14–17], or during in situ experiments
[18,19], a quantitative analysis at a single time-point is often
insufficient to understand the atomic structure-properties
relationship. Different time-resolving techniques, such as
dynamic transmission electron microscopy [20,21], ultrafast
electron diffraction [22–27], and ultrafast x-ray imaging
[28,29] have been developed in order to study structural
dynamics with very high temporal resolution. Since these
techniques sacrifice direct atomic resolution imaging, high-
resolution transmission electron microscopy [30], off-axis
electron holography [31], or annular dark field (ADF)
scanning transmission electron microscopy (STEM)
[32,33] are needed to obtain local structural information at
atomic resolution and subsecond temporal resolution. This
time resolution is adequate in order to study transient atomic
scale phenomena [19,34–39]. The concomitant advantage
forADFSTEMimages is that the intensities are peaked at the
atomic column positions and depend monotonically on the
atomic mass number Z and the thickness of the material
enabling us to count the number of atoms in each atomic
column. In this Letter, we propose amethod for reliable atom

counting from a sequence of ADF STEM images allowing
us to measure the dynamic structural changes of
nanoparticles.
From the ADF STEM images, we can quantify the total

intensity of electrons scattered towards the annular detector
from each atomic column. These are the so-called scattering
cross sections [40,41], and are a suitablemeasure for reliable
atom counting [42]. In pure-element nanomaterials, the
number of atoms in each atomic column can be determined
using these scattering cross sections [32,33,43–46]. When
the atom-counting results are combined with a structural
energy minimization [47–49], we can obtain a visualization
of the 3D atomic structure from a 2D imagewithout the need
for the large electron doses and long acquisition times
generally required for electron tomography. In order to
quantify atomic scale dynamics, we will use a so-called
hidden Markov model. Hidden Markov models were suc-
cessful in other fields of science for applications such as
speech recognition, sequence alignment of protein struc-
tures, electrocardiogram characterization, and condition-
based maintenance of industrial machines [50–54] and have
optimal properties for modeling and analyzing time series
data. Here, for the first time, we apply hidden Markov
models to ADF STEM data.
A hidden Markov model consists of two layers: a

“hidden” Markov chain state sequence and an observed
sequence. In order to use hidden Markov models for atom
counting, we model the number of atoms in each atomic
column of the nanoparticle as the hidden states and the
scattering cross sections estimated from the ADF STEM
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images as the observations. Table I in the Supplemental
Material [55] summarizes the notation used throughout
this Letter. The hidden state sequence is represented by a
stochastic tensor H ¼ ðh1;…;hTÞ⊺, which contains the
states ht at each time t, with T the total number of frames
in the time series. In our method, the state ht is a binary

matrixwith elements hðnÞtg ¼ 1, if and only if at time t, the nth
atomic column of the nanoparticle contains g atoms. As
such, we consider the number of atoms in each atomic
column as a separate hidden state, and we can use the so-
called factorial hidden Markov model [56], where the states
and model probabilities are factorized over the atomic
columns. The observed sequence is represented by the
matrix O ¼ ðo1;…; oTÞ⊺, where ot is the observed vector

at time t in the time series, with elements oðnÞt , the scatte-
ring cross section of the nth atomic column at time t.
When T ¼ 1, this approach is identical to the existing
procedure for atom counting [32,33,45,46]. The (factorial)
hidden Markov model is described by the joint proba-
bility density function of the hidden state sequence H
and the observed sequence O:

pðH;O;ΩÞ

¼ pðh1; IÞ
YT

t¼2

pðhtjht−1;AÞ
YT

t0¼1

pðot0 jht0 ; μ; σÞ; ð1Þ

withΩ ¼ fI;A; μ; σg the parameters of the hidden Markov
model. The joint probability density function of Eq. (1)
consists of three contributions, schematically shown in
Fig. 1. First, the initial probability distribution, defined as
follows:

pðh1; IÞ ¼
YN

n¼1

YG

g¼0

ι
hðnÞ
1g

g ; ð2Þ

with I the vector containing all initial probabilities ιg for an
atomic column to have g atoms in frame 1,G the maximum
number of atoms in an atomic column, andN the number of
atomic columns. Once the state sequence is initialized, the

transition probability describes how the states can change
from frame to frame in the time series:

pðhtjht−1;AÞ ¼
YN

n¼1

YG

g1¼0

YG

g2¼0

A
hðnÞt−1;g1

hðnÞt;g2
g1g2 : ð3Þ

This is the probability of state ht, given the previous state
ht−1. The transition probabilities are summarized by the
transition matrix A, with elements Ag1g2 the probability that
the number of atoms in an atomic column changes from g1 in
one frame to g2 in the next frame of the time series. The
Markov property imposes that the state sequence has no
memory: the number of atoms in an atomic column in a
frame only depends on the number of atoms in that atomic
column in the previous frame, and does not depend on any
earlier frames. The hidden Markov model does not impose
further restrictions on the physical mechanism causing the
changes in the atomic structure. Finally, for each frame, there
is an emission probability that describes the probability of an
observation, given the hidden state at that time. Ideally, all
atomic columns with the same number of atoms result in the
same scattering cross section. However, there are fluctua-
tions due to a combination of different effects such as
electron counting statistics, instabilities of the microscope,
different vertical onset of columns of the same number of
atoms, vacancies, relaxation at the boundaries, contamina-
tion, intensity transfer between columns, and the influence
of neighboring columns of different number of atoms.
Therefore, the scattering cross sections are regarded as a
statistical draw from a Gaussian distribution, which defines
the emission probability:

pðotjht; μ; σÞ ¼
YN

n¼1

YG

g¼0

N ðoðnÞt jμg; σÞh
ðnÞ
tg ; ð4Þ

with μ the vector containing the average scattering cross
sections μg for an atomic column with g atoms, and σ the
width of the Gaussian distribution, analogous to the
approach followed in Refs. [33,45]. Furthermore, prior

FIG. 1. (a) Graphical representation of a hidden Markov model, which consists of a hidden state sequence (top row) and an observed
sequence (bottom row), connected through the emission probability (red). The hidden states can have different possible values over time
according to initial (blue) and transition probabilities (green). (b) The hidden Markov model for atom counting models the number of
atoms in each atomic column of the nanoparticle as the hidden states (top row) and the scattering cross sections obtained from the ADF
STEM images as the observations (bottom row).
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knowledge from image simulations is incorporated by
imposing a linear scaling between the average scattering
cross sections and the scattering cross section resulting from
image simulations:

μg ¼ aMg: ð5Þ

In this expression, Mg is the scattering cross section
resulting from image simulations and a is a linear scaling
parameter that allows us to compensate for a possible
mismatch between experiment and simulation, such as
intensity changes due to a slightly different detector inner
angle or the intensity loss caused by small sample tilt
[46,57]. This approach was introduced for single frames
as the hybrid method for atom counting, yielding improved
atom-counting reliability, especially at low electron doses,
compared to alternative approaches [46].
In order to retrieve the hidden state sequence from

the observed sequence, the parameters of the factorial
hidden Markov model for atom counting are estimated.
The unknown parameters are

Ω ¼ ðι0;…; ιG−1; A00;…; AG;G−1; a; σÞ: ð6Þ

Since
P

G
g¼0 ιg ¼ 1 and

P
G
g¼0 Ajg ¼ 1∀ 0 ≤ j ≤ G, Gþ 2

parameters (ιG and AjG with 0 ≤ j ≤ G) could be omitted
from the parameter vector Ω. The parameters Ω can be
estimated using the maximum likelihood estimator [58].
Therefore, the complete data likelihood function of the
unknown parameter vector for the observed and hidden
data, which follows from Eq. (1), has to be maximized:

LðΩ;H;OÞ ¼ pðh1Þ
YT

t¼2

pðhtjht−1Þ
YT

t0¼1

pðot0 jht0 Þ: ð7Þ

The likelihood can be maximized analytically, by solving
the likelihood equation

∂ logLðΩ;H;OÞ
∂Ω ¼ 0: ð8Þ

This equation is solved iteratively, using an expectation-
maximization algorithm, usually called the Baum-Welch
algorithm in the context of hidden Markov models [50].
Using the estimated parameters, the hidden state sequence
with the joint highest probability is retrieved using a path
backtracking algorithm, called the Viterbi algorithm
[59,60]. More details about both algorithms are provided
in Sec. I of the Supplemental Material [55].
In order to illustrate the benefits of this newly developed

hiddenMarkov model for atom counting from a time series,
we compare its performance to the hybrid method [46]. For
the hybrid method, the scattering cross sections of all
frames of the time series are jointly analyzed, such that the
counting results are based on the same set of observations
as the hidden Markov model. The counting results are then
extracted per frame from this so-called collective analysis
[61,62]. We simulated scattering cross sections correspond-
ing to hypothetic ADF STEM time series with 40 frames of
a changing Pt nanoparticle with 215 atomic columns, and a
thickness up to 15 atoms, similar to the experimental
example that will be discussed further in this Letter. The
number of atoms in a column can change by�1 from frame
to frame throughout the time series, with a probability of
10%. An example of the 3D atomic structure of the Pt
nanoparticle and how it changes over time is shown in
Fig. 2(a). More details about the simulation can be found in
Sec. II of the Supplemental Material [55]. In Fig. 2(b), the
average percentage of correctly counted atomic columns by
both methods, with a 95% confidence interval, is evaluated
as a function of the electron dose. The hidden Markov

FIG. 2. (a) Example of the 3D atomic structure of the changing Pt nanoparticle. (b) Percentage of correctly counted atomic columns,
with a 95% confidence interval as a function of the electron dose in each individual frame. (c)–(h) Ground truth and estimated transition
matrices using the hidden Markov model analysis and the collective hybrid method with electron dose 5 × 102 and 105 e−=Å2.
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model counts the number of atoms in each column more
accurately, both at low electron doses, where Poisson noise
dominates, and at high electron dose, where the scan
distortion is the dominant noise contribution [63]. The
improved performance of the hidden Markov model is a
direct consequence of using the Viterbi algorithm to
retrieve the counting results. The most likely state sequence
obtained by this algorithm employs the extra information
from the transition probabilities to unravel the states and is
therefore not limited strictly by the overlap of the Gaussian
distributions around the average scattering cross sections of
columns with different thicknesses.
In Figs. 2(c) and 2(d), the underlying transitionmatricesA

are shown for a noise realization at low and high electron
doses, respectively. In Figs. 2(e)–2(h), we show the esti-
mated transition matrices using both methods for the
respective low and high dose noise realizations. The
transition matrix for the collective hybrid method was
estimated by considering the obtained atom-counting results
as a Markov chain. The transition matrix summarizes the
estimated structural changes of the nanoparticle: diagonal
elements correspond to the probabilities that the number of
atoms in an atomic column with a given thickness does not
change fromone frame to the next and off-diagonal elements
in the lower and upper triangle correspond to the proba-
bilities for an atomic column to lose or gain atoms
respectively. From the comparison of Figs. 2(g) and 2(h)
with the respective ground truth in Figs. 2(c) and 2(d), it is
clear that the collective hybrid method overinterprets inten-
sity variations during the time series as actual thickness
changes, both at low and high electron doses. From Fig. 2(e)
and 2(f) on the other hand, it is clear that the hiddenMarkov
model far more accurately retrieves the transition proba-
bilities, and therefore opens up possibilities for a reliable
quantification of dynamic structural changes of nanopar-
ticles at the atomic scale.
Next, we apply this to an experimental time series of a

catalyst Pt nanoparticle. ADF STEM images were recorded
on a JEOL ARM200CF fitted with a probe-aberration
corrector using an acceleration voltage of 200 kV, a probe
convergence angle of 22.48 mrad, an annular detector
ranging from 52–248 mrad, a dwell time of 4 μs and an
electron dose of 1.38 × 104 e−=Å2 per frame. All images of
the time series are shown in Fig. S1 of the Supplemental
Material [55]. The images from the time series were
corrected for drift and other distortions using nonrigid
registration [64]. Coordinates of the atomic columns were
selected in each frame using the maximum a posteriori
probability (MAP) rule for atomic column detection intro-
duced in [65]. As such, we could reliably determine all
atomic columns present in the nanoparticle throughout the
time series. During the time series, the Pt nanoparticle tilts
slightly away from zone axis orientation and back, which
affects the scattering cross sections [57]. However, the
hidden Markov model only estimates one linear scaling

parameter for all frames of the time series. Therefore, the
scattering cross sections of the individual frames need to be
compensated for tilt, prior to the hidden Markov model
analysis. This is done by using a linear scaling of the
scattering cross sections of the individual frames [46],
assuming that the total number of atoms in the nanoparticle
remains constant throughout the time series. This
assumption is valid since the threshold energy for sputtering
Pt atoms from a convex surface with step sites is 379 keV
[16], well above the incident electron energy of 200 keV.
We therefore do not expect sputtering of atoms from the
surface, only surface diffusion [63]. Next, dynamic struc-
tural changes are determined from the time series analysis
using a hidden Markov model, of which the results are
shown schematically in Fig. 3. The counting results for
all frames are shown in Fig. S2 of the Supplemental
Material [55].
The HAADF STEM projection images reveal the faceted

shape of the Pt nanoparticle. The f111g facets, on occasion
decorated by additional atoms [66], are indicated by green
crosses in Fig. 4(a). Using the counting results from our
hidden Markov model analysis, we can now quantify the
evolution of the number of atoms in these facets for each
frame of the time series [Fig. 4(b)]. While the total number
of atoms in the Pt nanoparticle remains the same, the
number of atoms in the f111g facets along the beam
direction decreases and the Pt nanoparticle gradually loses
its faceted morphology during electron beam irradiation.

FIG. 3. (a) The experimental ADF STEM time series of a Pt
nanoparticle. (b) From the estimated hidden Markov model, the
hidden state sequence is retrieved.

FIG. 4. (a) The Pt nanoparticle shows clear facets along the
beam direction. Atomic columns in f111g facets are indicated.
(b) Number of atoms in the f111g facets indicated in (a).
(c) Estimated transition probability matrix.
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This result is consistent with earlier observations of the
same type of Pt nanoparticles [44] and can be explained by
beam-induced surface diffusion. The hiddenMarkov model
analysis has the added advantage that it enables us to
quantify the probability for surface diffusion. From the
transition probabilities shown in Fig. 4(c) it follows that the
average probability for a surface atom to move to another
column equals 4.6%. Taking into account the electron
dose [63,67], an experimental value for the average cross
section for surface diffusion σ̂ ¼ 3.3 × 10−6 Å2, can even
be determined. This cross section for surface diffusion
includes the contributions of different migration mecha-
nisms, such as hopping, atomic exchange, and vacancy
diffusion, and from different types of surfaces [68,69]. This
value is of great importance in order to unravel dominant
mechanisms and surfaces in the diffusion process and to
gain new insights in surface related phenomena such as
catalysis and nanoparticle growth.
In conclusion, we present a new statistical framework to

reliably count the number of atoms in the atomic columns
of a pure-element nanostructure in each frame of an ADF
STEM time series using the so-called factorial hidden
Markov model. As a proof of concept, we show that the
performance of this new method significantly surpasses
that of the current method for atom counting. This
improved performance could be achieved since the hidden
Markov model explicitly models the dynamics of the
system. The new method is applied to an experimental
time series of ADF STEM images of a catalyst Pt nano-
particle, and reveals the loss of the Pt nanoparticle’s faceted
morphology during the time series, due to the electron
beam irradiation. Furthermore, our novel analysis approach
enables us to quantify the probability and cross section for
surface diffusion from a time series of experimental ADF
STEM images. The hidden Markov model for atom
counting therefore holds promise for a reliable quantifica-
tion of dynamic structural changes by adatom dynamics,
surface diffusion, beam effects, or during in situ experi-
ments. The hidden Markov model was implemented in the
freely available StatSTEM software [2].
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