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Weyl points are often believed to appear in pairs with opposite chirality. In this work, we show by first-
principles calculations and symmetry analysis that single Weyl phonons with linear dispersion and double
Weyl phonons with quadratic dispersion are simultaneously present between two specific phonon branches
in realistic materials with trigonal or hexagonal lattices. These phonon Weyl points are guaranteed to locate
at high-symmetry points due to the screw rotational symmetry, forming a unique triangular Weyl complex.
In sharp contrast to conventional Weyl systems with surface arcs terminated at the projections of a pair of
Weyl points with opposite chirality, the phonon surface arcs of the unconventional triangular Weyl complex
connect the projections of one double Weyl point and two single Weyl points. Importantly, the phonon
surface arcs originating from the triangular Weyl complex are extremely long and span the entire surface
Brillouin zone. Furthermore, there are only nontrivial phonon surface states across the isofrequency
surface, which facilitates their detection in experiments and further applications. Our work not only offers
the promising triangular phonon Weyl complex but also provides guidance for exploring triangular Weyl
bosons in both phononic and photonic systems.
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Recently, condensed-matter systems with intrinsic
topological orders have attracted a lot of attention [1–3].
On the one hand, these topological systems provide exotic
platforms to study elementary particles and their related
phenomena in high-energy physics, since quasiparticle
excitations in realistic materials provide analogs of relativ-
istic fermions or bosons in quantum field theory [3–5].
On the other hand, topological quasiparticles in crystalline
solids arise from nontrivial topology characterized by
topological invariants, offering a fascinating avenue to
investigate symmetry-protected topological orders.
Furthermore, quasiparticles in crystalline solids are not
constrained by the Poincaré symmetry but instead of the
crystal symmetry. Therefore, beyond conventional Dirac,
Weyl, and Majorana particles in the standard model, it is
potential to uncover unconventional topological quasipar-
ticles without high-energy physics counterparts in con-
densed-matter physics [6–9].
Up to now, many conventional and unconventional

topological quasiparticles have been proposed. For exam-
ples, various nontrivial fermions in topological semimetals
[4,5,10–13] and topological bosons in crystalline solids
[14–24] are the subjects of intense studies. Among these
nontrivial quasiparticles, Weyl-type excitations are of
particular importance. The topology of Weyl point (WP)

is characterized by a quantized chiral charge or Chern
number C. Because of the twofold-degenerate feature, WPs
are present in a system by breaking either the time-reversal
(T ) or inversion (I) symmetry. Usually, there are equal
numbers of WPs with opposite chirality according to the
Nielsen-Ninomiya no-go theorem [25,26], and thus the
total topological charge is zero. However, the crystal
symmetries of crystalline solids are more complicated,
which may possess unconventional Weyl-type quasipar-
ticles. For instance, the fourfold or sixfold rotational
symmetry can protect quadratic-double or cubic-triple
WPs [27] and the screw rotational symmetry can protect
double WPs [14] or WPs with the higher Chern number C
[28,29]. It is worth noting that the mentioned high-order
WPs above always come in pairs with opposite chiral
charge [14,27–29]. If a system simultaneously possesses
WPs with different chiral charge, the topological stability
(i.e., the conservation of chiral charge) may not require that
WPs must appear in pairs [25,26], i.e., a special Weyl
complex with the number of WPs exceeding two can
emerge in realistic materials.
To elaborate the topological features above, we first

consider a conventional Weyl system in which WPs
appear in pairs with opposite chiral charge as illustrated
in Fig. 1(a). Without loss of generality, we assume that the
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paired WPs are single WPs with Chern number C ¼ �1.
This Weyl pair projected on a surface gives a discontinuous
surface arc, which connects the projections of these two
WPs with opposite chiral charge [see Figs. 1(a) and 1(b)]
[4]. In contrast, if WPs in a system do not appear in pairs
with opposite chiral charge, the number of right-handed
WPs is unequal to that of left-handed WPs. For instance,
two single WPs with Chern number C ¼ −1 and one
quadratic-double WP with Chern number C ¼ þ2 in a
system [see Fig. 1(c)] form a unique triangular Weyl
complex. In this case, the topological stability and no-go
theorem are also preserved. As a result, this triangular Weyl
complex projected on a surface can lead to two surface arcs,
which both start at the projection of the double WP and
respectively end at the projections of two single WPs [see
Figs. 1(c) and 1(d)]. Analogously, if a Weyl system
simultaneously possesses WPs with different (e.g., linear,
quadratic, cubic) dispersions and Chern numbers, the
combination of these WPs can further form various
polygonal Weyl complexes. So far, Weyl pairs always
appear in a Weyl system [3], but Weyl complexes (i.e.,
triangular or polygonal) with the number of WPs exceeding
two and their corresponding surface states have not been
reported.
In this work, we identify that unconventional triangular

Weyl complex of phonons can exist in crystals crystallizing
in trigonal or hexagonal lattices. This corresponds to the
fact that the nonsymmorphic screw rotational and T

symmetries are present but the I symmetry is absent in
these space groups. We offer an intuitive perspective of
symmetry analysis to understand the symmetry-protected
triangular Weyl phonons. For trigonal lattices, we generally
consider the nonsymmorphic screw rotational symmetry C̃3

along the c axis, i.e., C̃3z ¼ fC3zjτg, where C3z is the
threefold rotational operator and τ ¼ ½0; 0; ðc=3Þ� is a
partial translation vector. In a periodic system, the eigen-
values of C̃3z can be expressed as Ẽμ ¼ Eμe−ikzc=3 (see the
Supplemental Material [30]), whereEμ¼ei2πμ=3 (μ¼0, 1, 2)
are the rotational eigenvalues of C3z. If two phonon
branches are very close in a frequency at Kwp on a screw
axis, we can use a 2 × 2 effective Hamiltonian to describe
them as

HðqÞ ¼ dðqÞσþ þ dðqÞ�σ− þ fðqÞσz; ð1Þ

where H is referenced to the frequency of a WP, dðqÞ
represents a complex function, fðqÞ represents a real
function, q ¼ k −Kwp denotes the wave vector relative
to Kwp, σ� ¼ σx � iσy, and σi (i ¼ x, y, z) are the Pauli
matrices. C̃3z constrains the Hamiltonian as

C̃3zHðqÞC̃−1
3z ¼ HðR3zqÞ; ð2Þ

where R3z is a 3 × 3 rotation matrix of C3z. On the invariant
kz axis through a high-symmetry point, Eq. (2) indicates that
all branches on this invariant line correspond to Ẽμ. If two
crossing phonon branches are labeled by Ẽμ1 and Ẽμ2 , the
constraint Eq. (2) gives

e−i2πðμ1−μ2Þ=3dðqþ; q−Þ ¼ dðqþei2π=3; q−e−i2π=3Þ;
fðqþ; q−Þ ¼ fðqþei2π=3; q−e−i2π=3Þ; ð3Þ

where q� ¼ qx � iqy. The degeneracy of two phonon
branches at the invariant plane with kz ¼ 0, �π=c requires
μ1 − μ2 ¼ �1 (see the Supplemental Material [30]). At the
K (or H) point, there is only C̃3z. Then, we expand Eq. (3)
and remain the lowest orders as

dðqÞ ¼ aþqþ þ a−q−; fðqÞ ¼ azqz; ð4Þ

which implies a single WP with chiral charge �1 at the K
(orH) point. At the Γ (or A) point, it is invariant under the T
symmetry. Since the T symmetry is always conserved in a
phonon system, the product operator C̃3zT requires (see the
Ref. [30])

ei2πðμ1−μ2Þ=3dðqþ; q−Þ ¼ dðqþe−iπ=3; q−eiπ=3Þ;
fðqþ; q−Þ ¼ fðqþe−iπ=3; q−eiπ=3Þ: ð5Þ

In this case, the symmetry-allowed expressions as a function
of q to the lowest orders can be written as

FIG. 1. (a) A Weyl pair with a surface arc and (b) the
corresponding surface states. (c) A special Weyl complex (i.e.,
two single WPs with C ¼ −1 and one double WP with C ¼ þ2
form a triangle denoted as green dashed lines) with surface arcs
and (d) the corresponding surface states.
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dðqÞ ¼ bþq2þ þ b−q2−; fðqÞ ¼ bzqz; ð6Þ

which indicates that quasiparticle excitations around the Γ
(or A) point are quadratic in the kx-ky plane and linear along
the kz axis, forming a double WP with chiral charge �2 at
the Γ (or A) point. Besides, the crystals crystallized in a
hexagonal lattice possess the C̃6z symmetry at the Γ (or A)
point and the C̃3z symmetry at the K (orH) point, which can
also lead to double and single WPs (see the Supplemental
Material [30]), respectively.
Based on the above analysis, we have revealed that the

combination of C̃3z and T symmetries or the C̃6z symmetry
can protect double Weyl phonons at the Γ (or A) point while
the C̃3z symmetry can protect single Weyl phonons at
the K (or H) point, resulting in the symmetry-protected
triangular Weyl phonons. The possible space groups that
host the symmetry-protected triangular Weyl complex of
nontrivial phonons are provided in the Supplemental
Material [30]. In the main text, we focus on α quartz
(i.e., α-SiO2), a well-known mineral crystallizing in a
trigonal lattice. Topological phonon features of YPt2B
in a hexagonal lattice are shown in the Supplemental
Material [30].
To show the nontrivial phonon topology, we carried

out first-principles calculations as implemented in the
Vienna ab initio simulation package [38] (see details in
Ref. [30]). The phonon spectra were obtained from a
supercell approach, in which interatomic force constants
were calculated by finite displacements [39]. As α-SiO2 is
polarized, we also considered the nonanalytical term
correction to remove imaginary acoustic modes when
q → 0 [40–42]. As shown in Figs. 2(a) and 2(b), α-SiO2

crystallizes in a trigonal lattice with nonsymmorphic space
group P3221 (No. 154), which lacks the I symmetry. The
hexagonal bulk Brillouin zone (BZ) and its corresponding
(001) and (010) surface BZs are shown Fig. S2 (see the
Supplemental Material [30]).
Using first-principles calculations, we calculate the

phonon spectra and confirm that the triangular Weyl
phonons exist in optical phonon branches of α-SiO2.
The phonon dispersion curves along the high-symmetry
directions are shown in Fig. 2(c), which match well with
previous theoretical and experimental results [43–47].
The phonon spectra show that there are visible double-
degenerate nodal points at high-symmetry points, which are
contributed from three phonon branches 16, 17, and 18
[highlighted in Fig. 2(c)]. The branches 16 and 17 cross at
the K and A points. Instead, the branches 17 and 18 cross at
theH and Γ points. The crossing frequencies at theK, A,H,
and Γ points are ωK ¼ 16.13, ωA ¼ 16.23, ωH ¼ 18.35,
and ωΓ ¼ 19.76 THz, respectively. Around the K (or H)
point, it is clear to see that phonon dispersions are linear.
This isotropic Dirac cone indicates the presence of a single
WP with chiral charge �1. In contrast, phonon dispersions
around the Γ (or A) point are dramatically different, that is,

quadratically dispersing along Γ-K (or A-H) and linearly
dispersing along Γ-A. We plot phonon dispersions around
the Γ point in the kx-ky plane with kz ¼ 0 and along the kz
axis in Figs. 3(a) and 3(b), respectively. The two figures
show that the phonon dispersions around the Γ point are
quadratic in the kx-ky plane but linear along the kz axis. We
also check the phonon dispersions around the A point,
which are the same with those around Γ. These results
indicate that the nodal point at Γ (or A) form a double
phonon WP with chiral charge −2 (or þ2).
We further employ the Wilson-loop method [48,49] to

determine the chiral charge of the above Weyl phonons.
The results show that the WPs at the K and A points
between the branches 16 and 17 are indeed the single WP
with C ¼ −1 and double WP with C ¼ þ2, respectively.
There are six K points in the first BZ and each K point is
shared by three neighbor Wigner-Seitz cells in momentum
space, and thus the total chiral charge is zero. As shown in
Fig. 3(c), we plot the corresponding distribution of Berry
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FIG. 2. Crystal and phonon spectra of α-SiO2. (a) Side and
(b) top views of α-SiO2. (c) The phonon spectra of α-SiO2 along
high-symmetry lines. Three nontrivial phonon branches 16, 17,
and 18 are highlighted in red, green, and black, respectively. The
lower panels show the zoom-in regions 1 and 2 marked by boxes
in the upper panel of (c), respectively.
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curvature in the kx-kz plane. As expected, the double
phononWP with C ¼ þ2 at the A point acts as the “source”
point, whereas the single phonon WPs with C ¼ −1 at the
K point can be viewed as the “sink” points. This unique
distribution of phonon WPs in momentum space forms the
triangular Weyl complex. Similarly, the phonon WPs
between the branches 17 and 18 possess the opposite
chiral charge (i.e., six single WPs with C ¼ þ1 at the H
point and one double WP with C ¼ −2 at the Γ point),
which also indicates the other triangular Weyl phonons but
exhibits the opposite distribution of Berry curvature.
The exotic triangular Weyl complex of phonons corre-

sponds to unique nontrivial surface states. To illustrate this,
we construct a phonon tight-binding Hamiltonian in the
Wannier representation from second-order interatomic
force constants. In this representation, the iterative
Green’s function method [48,50] is employed to calculate
phonon surface states. The phonon local density of states
(LDOS) projected on a semi-infinite (001) surface of
α-SiO2 is shown in Fig. 4(a). As expected, there are two
visible phonon surface states, which both start at the
projection of the double WP at Γ̃ and, respectively, end
at the projections of two single WPs at K̃. Unlike the
surface arcs terminated at the projections of a pair of WPs
with opposite chiral charge in conventional Weyl systems,

the isofrequency surface of (001) shows that there are two
phonon surface arcs connecting the projections of the double
WP and single WPs in the first surface BZ of (001) [see
Fig. 4(c)]. Because of the conservation of topological chiral
charge, the other phonon surface arcs terminated at K̃ are
shared by the neighboring Wigner-Seitz cells. We also plot
the phononLDOS and isofrequency surface projected on the
semi-infinite (010) surface of α-SiO2 in Figs. 4(b) and 4(d),
respectively. The projections of bulk states on the (010)
surface confirm that the dispersion near the doubleWPalong
the kz axis is linear. Two phonon surface arcs in the first BZ
of the (010) surface are clearly visible. Since the symmetry-
protected WPs at the A (Γ) and K (H) points dominate the
isofrequency surface of 3D hexagonal BZ, we can see that
two phonon surface arcs cross each half of the first surface
BZ. Therefore, the phonon surface arcs are guaranteed to be
very long and span the entire first surface BZ. Furthermore,
it is worth mentioning that there are only the nontrivial
surface arcs across the isofrequency surface. The absence of
trivial bulk states on the (001) and (010) surfaces of α-SiO2

greatly facilitates the experimental detection and further
applications.
In summary, we show that there are unequal numbers of

phonon WPs with opposite chirality in trigonal or hexago-
nal lattices with breaking the inversion symmetry. The
distribution of Weyl phonons constructs an unconventional

FIG. 3. Two phonon branches around the Γ point form
(a) quadratic dispersion in the kx-ky plane and (b) linear
dispersion along the kz axis. (c) The distribution of Berry
curvature in the kx-kz plane. The triangular Weyl complex is
denoted as the red-dashed triangle.

FIG. 4. The phonon surface states of α-SiO2. The phonon
LDOS projected on the (a) (001) surface and (b) (010) surface.
The isofrequency surfaces at ω ¼ 16.22 THz projected on the
(c) (001) and (d) (010) surfaces. In (c) and (d), the first BZ of
(001) and (010) are marked by white-dashed lines, and high-
symmetry lines for LDOS in (a) and (b) are marked in green-
dashed lines. The yellow and blue dots indicate the projections of
WPs with C ¼ þ2 and C ¼ −1, respectively.
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triangular Weyl complex, and their nontrivial phonon
surface states uniquely connect the projections of phonon
WPs with different chiral charge. The nonsymmorphic
screw symmetry protects the phonon WPs located at high-
symmetry points, which guarantees that the phonon surface
arcs span the entire first BZ of surface. The longest phonon
arcs can provide entire modes of topological phonon
surface states in a robust nontrivial one-way phonon
propagation channel. A very interesting point is that trivial
bulk states are absent in isofrequency surfaces, which
greatly facilitates their detection in experiments.
Therefore, our findings provide ideal candidates for real-
izing triangular Weyl complexes of phonons and their
nontrivial surface states. Furthermore, our results can also
be applied to fermionic systems.
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