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When rotating classical fluid dropsmerge together, angularmomentumcanbe advected fromone to another
due to the viscous shear flow at the drop interface. It remains elusivewhat the correspondingmechanism is in
inviscid quantum fluids such as Bose-Einstein condensates (BECs). Herewe report our theoretical study of an
initially staticBECmergingwith a rotatingBEC in three-dimensional space along the rotational axis.We show
that a solitonlike sheet, resembling a corkscrew, spontaneously emerges at the interface. Rapid angular-
momentum transfer at a constant rate universally proportional to the initial angular-momentum density is
observed. Strikingly, this transfer does not necessarily involve fluid advection or drifting of the quantized
vortices. We reveal that the corkscrew structure can exert a torque that directly creates angular momentum in
the static BEC and annihilates angular momentum in the rotating BEC. Uncovering this intriguing angular-
momentum transport mechanism may benefit our understanding of various coherent matter-wave systems,
spanning from atomtronics on chips to dark matter BECs at cosmic scales.
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Conservation of angular momentum can have a profound
effect on the dynamics of rotating fluid systems such as
cyclonic eddies in the ocean [1] and accretion disks
surrounding stars and black holes [2,3]. When rotating
classical fluids merge together, the viscous shear flow at the
interface can lead to the formation of vortical structures due
to the Kelvin-Helmholtz instability [4,5]. Angular momen-
tum can be advected from one fluid body to another,
accompanied by the drifting of the vortical structures [6].
However, for invisid quantum fluids such as low temper-
ature Bose-Einstein condensates (BECs), little is known on
what flow structures may form at the interface and how the
angular-momentum transfer is achieved. On the other hand,
understanding the mechanism of angular-momentum trans-
port between merging rotating BECs may benefit the study
of a wide range of coherent matter-wave systems. For
instance, for spinning neutron stars that consist of neutron-
pair superfluid [7,8] and for rotating galactic cold dark
matter halos that are believed to form BECs [9], the
merging of the neutron stars [10] and the collision of
the galactic dark matter halos [11] may exhibit similar
characteristics as merging rotating atomic BECs.
In the past, there were numerous studies on the merging

dynamics of isolated atomic BECs due to its relevance to

matter wave interferometry [12–15] and the celebrated
Kibble-Zurek (KZ) mechanism [16–21]. However, most of
these studies focused on merging of BECs with no initial
relative motions. The merging dynamics of rotating BECs,
subjecting to angular-momentum conservation, is more
intriguing but has received much less attention. In a recent
numerical work by the authors, the merging of a rotating
disk condensate with a concentric ring condensate in two-
dimensional space was studied [22,23]. Nevertheless, since
fluid advection and angular-momentum transfer occurs in
the same plane, it was impractical to disentangle the fluid
advection effect from other possible angular-momentum
transfer mechanisms.
In this Letter, we report our numerical study of two

cylindrical BECs merging along their rotational axis in
three-dimensional (3D) space. We show that a solitonlike
structure, resembling a “corkscrew”, emerges at the inter-
face of the two BECs, accompanied by rapid angular-
momentum transfer. Strikingly, we reveal that this transfer
does not necessarily involve fluid advection or quantized
vortices. Instead, a new mechanism is identified: the
solitonic corkscrew can exert a torque that directly creates
angular momentum in the initially static BEC and annihi-
lates angular momentum in the rotating BEC. Uncovering
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this fascinating mechanism may have a far-reaching impact
in various relevant topic areas.
Numerical method.—To model the dynamical evolution

of a BEC system at zero temperature, we adopt a nonlinear
Gross-Pitaevskii equation (GPE) [24]:

iℏ
∂ψ
∂t ¼

�
−

ℏ2

2M
∇2 þ Uðr; tÞ þ gjψ j2

�
ψ ; ð1Þ

where ℏ is Planck’s constant,M is the mass of the particles
that form the condensate, ψ ¼ jψ jeiϕ is the complex
condensate wave function, U is the external potential that
confines the condensate, and g is the coupling constant that
measures the strength of the particle interactions. For
convenience, we introduce dimensionless parameters
r̃ ¼ r=ξ, t̃ ¼ t=τ, and ψ̃ ¼ ψ=ð

ffiffiffiffiffiffiffiffiffiffiffi
N=ξ3

p
Þ, where ξ ¼

ℏ=
ffiffiffiffiffiffiffiffiffiffiffiffi
2Mng

p
is the healing length, τ ¼ ℏ=ng, N ¼R

dVjψ j2 is the total particle number, and n ¼ N=V is
the particle number density averaged over the system
volume V. The original GPE can be written in the following
dimensionless form:

i
∂ψ̃
∂ t̃ ¼ ½−∇̃2 þ Ũðr̃; t̃Þ þ g̃jψ̃ j2�ψ̃ ; ð2Þ

where the dimensionless coupling constant g̃ takes the form
g̃ ¼ N=ðnξ3Þ ¼ V=ξ3 and the dimensionless potential
Ũ ¼ U=ng now measures the ratio of the external potential
U to the particle interaction strength ng.
To study BEC merging along the rotational axis, we

consider two cylindrical BECs of equal sizes that are
aligned along the z̃ axis. This configuration is achieved
by setting Ũ ¼ Ũtrap þ Ũw, where Ũtrap represents a cylin-
drical hard-wall box potential that traps the condensates
and Ũw denotes the potential barrier that separates the two
BECs, as shown in Fig. 1(a). The hard-wall trap Ũtrap has a
diameter of 20ξ and a length of 50ξ. The potential barrier,
which is located at the center of the hard-wall trap, has a
uniform height of Ũw ¼ 10 with a thickness z̃0 ¼ 5. The
initial state is prepared by evolving Eq. (2) in imaginary
time [25], i.e., substituting t̃ ¼ −iτ while imposing con-
servation of the superfluid density to effectively minimize
the energy of the system. Quantized vortex lines can be
introduced to each condensate. An example of the initial
condensate density profile with a single vortex line in the
lower condensate is shown in Fig. 1(b). At time t̃ ¼ 0, we
then suddenly remove the energy barrier Ũw and let the two
condensates merge. The dynamical evolution of the con-
densate wave function can be obtained by numerically
integrating Eq. (2) with spatial steps △x̃ ¼ △ỹ ¼ △z̃ ¼
0.2 and a time step △t̃ ¼ 4 × 10−5 using the forth-order
Runge-Kutta method [26].
Experimental relevance.—Our model configuration can

be realized in BEC experiments. Indeed, box potential

has already been implemented experimentally [27,28].
Separating two BECs in a box geometry like in Fig. 1
using tailored optical potentials is straightforward. The size
of our BECs and the height of the potential barrier are all
within the parameter range of representative experiments
(i.e., typical BEC size of about 10ξ–102ξ [20,29–31] and
typical Ũ in the range of 1–100 [20,29–33]). To create
vortices in one BEC while keeping the other one static is
more challenging but not impossible. For instance, one may
imprint vortices in the BECs and apply enhanced dissipa-
tion in one of them so that this BEC loses vorticity faster
and eventually only one vortex line remains in the system.
We would also like to mention that our BEC configuration
is very similar to that used in the experiment for studying
interface instability between superfluid 3He A phase and B
phase [34,35], although that experiment involved two
immiscible superfluids and hence merging dynamics was
not relevant.
Simulation results.—For validation purpose, we first

consider the merging of the two BECs with no initial
relative motion. Figures 2(a) and 2(b) show two cases
where the two condensates are, respectively, static and
corotate with a vortex line placed at the center at t̃ ¼ 0. As
the potential barrier is removed, interference fringes are
formed at the interface. These fringes quickly evolve into
disk-shaped dark solitons that propagate towards the top
and bottom ends of the trap. The solitary nature of these
disks is supported by the abrupt phase step △ϕ across the
density-depleted regions and the fact that they travel at the
expected soliton speed vs ¼ v0 · cosð△ϕ=2Þ opposite to
the direction of the phase step [36]. This behavior agrees
well with the observed dynamics of soliton disks created in
3D cigar-shaped condensates [37,38]. In longtime evolu-
tion, the soliton disks decay into vortices due to snake
instability [39–42].
We now focus on BEC merging that is accompanied by

angular-momentum transfer. A representative case is shown
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FIG. 1. (a) Schematic of the potential Ũðr̃Þ used in Eq. (2).
(b) Initial density and phase profile of the BECs with a single
vortex line at the center of the lower condensate. The plot shows
the density isosurface at 50% of the bulk density.
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in Fig. 2(c). At t̃ ¼ 0, the lower condensate rotates with a
vortex line placed at the center and carries angular
momentum, while the upper condensate is static with a
uniform phase ϕ ¼ 0. Because of the phase winding in the
lower condensate, the phase difference between the two
condensates across the barrier gap varies around the z̃ axis.
The time evolution of the condensate wave function now
exhibits fascinating new features. First, a solitonlike struc-
ture resembling a corkscrew emerges at the interface of the
two condensates. This structure then extends towards both
ends of the cylindrical BEC, reaches the ends at about
t̃ ≃ 15, and bounces back, generating complex flows and
density field in the merged BEC (see movies in the
Supplemental Material [43]). The solid yellow lines shown
in Fig. 2(c) represent the locations of the vorticity singu-
larities. One can see that the propagation of the helical
soliton sheet in the lower condensate induces waves along
the vortex line, i.e., the so-called Kelvin waves [44–46].
Interestingly, at relatively short evolution time (i.e.,
t̃ < 12), the vortices are nearly confined to the z̃ < 0
region. Entrained by the local flows [44], these vortices
later move to the upper region. At long evolution times, the
decay of the soliton and its interaction with the vortices and
the trap lead to the formation of a quantum turbulence [47]
that carries angular momentum, as shown in Fig. 2(c)
at t̃ ¼ 45.

To quantify angular-momentum transfer, we introduce a
dimensionless angular-momentum density L̃z as

L̃z ¼
τξ

m
ðψ�L̂zψÞ ¼

2

i
ψ̃�

�
x̃
∂
∂ỹ − ỹ

∂
∂x̃

�
ψ̃ : ð3Þ

The evolution of the angular-momentum density for the
case presented in Fig. 2(c) is shown in 2(d). It seems that
the angular momentum initially contained in the lower
rotating condensate can rapidly “flow” to the upper con-
densate region along the helical channel formed by the
soliton sheet. We can also calculate the total angular
momentum L̃T ¼ R

L̃zdṼ integrated over the upper
(z̃ > 0) and lower (z̃ < 0) regions, as shown in Fig. 3(a).
An interesting question one may raise is what the

angular-momentum transfer mechanism is at t̃≲ 12, i.e.,
before the vortices drift into the upper condensate region.
Figure 2(d) may give an illusion that this transfer is
controlled by fluid advection. However, this is not true.
The angular momentum advected across the z̃ ¼ 0 plane
can be evaluated as

R
t̃
0 dt

0R
z̃¼0 ṽzðr̃; t0ÞL̃zðr̃; t0Þ · d2r̃, where

ṽz ¼ 2∂ϕ=∂z̃ is the velocity component along the z̃ axis.
As shown in Fig. 3(b), this advection contribution is only a
small fraction of the total angular momentum gained by the
upper condensate. This result is reasonable since the flow in
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FIG. 2. Merging dynamics of the two condensates when they are (a) static and (b) corotate at t̃ ¼ 0. (c) Condensate density evolution
when only the lower condensate contains a vortex line at t̃ ¼ 0. The color plots at t̃ ¼ 3 and 6 show the instantaneous phase profiles. The
solid yellow lines represent the locations of the vorticity singularities. (d) Evolution of the angular-momentum density L̃z corresponding
to (c). The plots show L̃z isosurface at 10% of the initial bulk value.
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the lower condensate is initially perpendicular to the
merging direction. The gradual increase of the advection
contribution at t̃≳ 7.5 can also be understood: the Kelvin
waves on the vortex line in the lower condensate deform the
line into a coil shape, which then induces a vertical flow
through the coil that effectively advects angular momentum
to the upper region.
In order to explain the observed rapid angular-momen-

tum transfer at small evolution times, a mechanism other
than advection is needed. We note that the helical soliton
sheet has a free edge inside the BEC. Because of the phase
step across the soliton sheet, there is a phase winding
around this edge line, which induces flows in the BEC
effectively like a vortex line. This feature is similar in
nature to the 2D case discussed in Ref. [22]. As the soliton
propagates, the phase profile associated with it can exert
force and hence torque to both the upper and lower
condensates. The torque per unit volume in the BEC with

respect to the z̃ axis is given by T̃z ¼ ð ⃗r̃ × ⃗f̃Þ · êz, where the
force per unit volume ⃗f̃ can be evaluated based on the
change rate of the condensate momentum density,
⃗f̃ ¼ d ⃗P̃=dt̃ ¼ dðjψ̃ j2 ⃗ṽÞ=dt̃. To better illustrate the torque
profile in the upper condensate, in Fig. 4(a) we show the total
torque T̃pl integrated over the x̃ − ỹ plane and over a step
length△z̃ ¼ 0.2 along the z̃ axis. This torque profile moves
towards the top end of the condensate just like the motion of
the soliton sheet. To verify the correlation between the torque
and the soliton sheet, we plot the corresponding soliton
profiles in Fig. 4(b). It turns out that the spatial extent of the
torque matches well with the soliton profile. The peak of the
torque profile roughly coincideswith the center of the soliton
profile in the upper condensate region.We have also checked
that the angular momentum created by the total torque in the

upper condensate region matches exactly the difference
between the two curves in Fig. 3(b), which therefore
confirms that the torque is the missing mechanism for the
angular-momentum transfer. Note that the soliton sheet also
exerts a torque to the lower condensate. But since the phase
step of the soliton sheet reverts its direction across the z̃ ¼ 0
plane [e.g., see Fig. 2(a)], the torque in the lower condensate
has a negative sign, thereby annihilating the angular momen-
tum in this region. The exact torque profile in the lower
condensate is complicated due to the existence of the
vortices, but the magnitude of the total torque matches that
in the upper condensate, which warrants angular-momentum
conservation.
We have also examined the rate of angular-momentum

transfer in the early stage of the BEC merging where the
torque mechanism plays the key role. This rate can be
determined through a linear fit to the total angular-
momentum data as shown in Fig. 3(b). The almost linear
time dependence of L̃T can be understood by examining the
torque profile shown in Fig. 4(a). While the torque profile
evolves with time, we have confirmed that the total area
below the profile curve, which equals the total torque
exerting in the upper BEC region, remains nearly constant.
Therefore, a constant angular-momentum transfer rate
results.
We are also curious about how this rate may depend on

the initial angular-momentum density difference L̃zð0Þ
between the two condensates. To investigate this effect,
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we vary L̃zð0Þ by introducing multiple vortex lines in the
lower condensate while keeping the upper condensate
static. Furthermore, for a given number of vortex lines
in the lower condensate, L̃zð0Þ can be further tuned by
varying the distance between the vortices and the z̃ axis.
Figure 5(a) shows an example case with three vortex lines
in the lower condensate at t̃ ¼ 0. Instead of having one
soliton sheet, three solitonic corkscrews emerge and twist
together. A constant angular-momentum transfer rate
dL̃T=dt̃ is again observed at short evolution times, and
this indeed holds for every cases we have studied. In
Fig. 5(b), we plot the obtained dL̃T=dt̃ against L̃zð0Þ for all
the cases. It is remarkable to observe that the rate dL̃T=dt̃ is
universally proportional to L̃zð0Þ regardless of the vortex
configurations. This universality may be understood quali-
tatively as follows. The L̃zð0Þ depends on the exact vortex
configuration. Meanwhile, for any vortex configuration, the
solitonic corkscrews are always initiated at locations where
the vortex lines are. Therefore, the spatial arrangement of
the solitonic corkscrews mimics the geometric configura-
tion of the vortex lines. The resulting total torque depends

on this spatial arrangement in a similar way as the
dependance of L̃zð0Þ on the vortex configuration.
Therefore, the total torque (which equals dL̃T=dt̃ when
the torque mechanism dominates) appears to be consis-
tently proportional to L̃zð0Þ at short evolution times.
In summary, our work has revealed the formation of

solitonlike corkscrew structures at the interface of merging
rotating BECs. These corkscrews enable angular-momen-
tum transfer by exerting torques to the BECs. The rate of
this transfer appears to be universally proportional to the
initial angular-momentum density difference. These find-
ings not only enrich our knowledge of BEC merging
dynamics but also benefit the study of other rotating
coherent matter-wave systems.
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