
 

Morphological Superfluid in a Nonmagnetic Spin-2 Bose-Einstein Condensate
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The two known mechanisms for superflow are the gradient of the U(1) phase and the spin-orbit-gauge
symmetry. We find the third mechanism, namely a spatial variation of the order-parameter morphology
protected by a hidden su(2) symmetry in a nonmagnetic spin-2 Bose-Einstein condensate. Possible
experimental situations are also discussed.
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Superflow is usually generated by the gradient of the
U(1) phase. In spinor Bose-Einstein condensates (BECs),
the spin-gauge symmetry provides the second mechanism
of superfluidity. For instance, in a ferromagnetic spin-1
BEC, superflow can be induced by spin textures via the
spin-gauge symmetry [1,2], whereas a polar superfluid can
only be carried by the gradient of the U(1) phase [2].
Similarly, in the superfluid 3He-A phase, superflow can be
induced by textures of the l vector via the orbital-gauge
symmetry [3]. Here we report our finding that for the case
of a spin-2 BEC, spatial variation of the order-parameter
shape can generate a supercurrent even in the nonmagnetic
nematic and cyclic phases, offering the hitherto unexplored
third mechanism of superfluidity. A full investigation of
this possibility is the main theme of this Letter.
A spin-F BEC can be described in the mean-field

approximation by a (2F þ 1)-component order parameter
ψ ≡ ðψ−F;ψ−Fþ1;…;ψm;…;ψFÞT [2,4], where T denotes
the transpose and m ¼ F;…;−F is the magnetic sublevel.
The superfluid velocity is defined in terms of the order
parameter, the atomic mass M, and the local density ρ ¼P

F
m¼−F jψmj2 as v≡ ðℏ=2MiρÞ½ψ�

mð∇ψmÞ − ð∇ψ�
mÞψm�.

For a general spin-1 BEC, the order parameter can be
expressed in the irreducible representation by six param-
eters (see Supplemental Material S1 D [5]):

ψ ¼ eiφ
ffiffiffi
ρ

p
RF¼1ðα; β; γÞ

0
B@

cosϑ

0

sinϑ

1
CA; ð1Þ

where φ is the U(1) phase, ϑ characterizes the relative
amplitude between the m ¼ �1 states, and RFðα; β; γÞ ¼
exp ð−αFzÞ exp ð−βFyÞ exp ð−γFzÞ describes a Euler rota-
tion in terms of the spin-F matrices Fμ’s (μ ¼ x, y, z) and
the Euler angles α, β, and γ. Equation (1) describes a
ferromagnetic state at ϑ ¼ nπ=2 (n ∈ Z) and a polar state
with ϑ ¼ ð2nþ 1Þπ=4. The superfluid velocity for a spin-1
BEC can be expressed in terms of these parameters as [14]

v ¼ ℏ
M

fð∇φÞ − ½ð∇αÞ cos β þ ð∇γÞ� cos 2ϑg: ð2Þ

For the case of a nonmagnetic spin-1 BEC with ϑ ¼
ð2nþ 1Þπ=4, Eq. (2) reduces to v ¼ ðℏ=MÞ∇φ and hence
superflow can only be generated from the U(1) phase.
However, a new situation arises for a nonmagnetic spin-2

BEC, where the order parameter can generally be described
by seven parameters (Supplemental Material S1 E [5]):

ψ ¼ eiφ
ffiffiffi
ρ

2

r
RF¼2ðα; β; γÞ

0
BBBBBB@

eiχ sin η

0ffiffiffi
2

p
cos η

0

eiχ sin η

1
CCCCCCA
; ð3Þ

where η and χ describe the relative amplitude and phase
between them ¼ �2 andm ¼ 0 components. Here we note
that the phase difference between the m ¼ 2 and m ¼ −2
components can be absorbed in the Euler angle γ. The
symmetry of this order parameter can be described by
the reciprocal spin representation [6–10] which employs
the stereographic mapping of the four roots of the following
algebraic equation:

X2
m¼−2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24

ð2þmÞ!ð2 −mÞ!

s
ξ�mw2þm ¼ 0; ð4Þ

where ξm ≡ ψm=
ffiffiffi
ρ

p
is the normalized order parameter.

The four roots of Eq. (4) are stereographically mapped onto
the Bloch sphere via w ¼ eiϕ tan ðθ=2Þ with ϕ and θ
being the azimuth and polar angles, giving four vertices
of a polyhedron. These vertices constitute a line segment, a
rectangle, or a tetrahedron for the uniaxial nematic, biaxial
nematic, and cyclic phases, respectively. The morphology
of the order parameter of a spin-2 BEC depends crucially
on χ and η as illustrated in Fig. 1.
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It follows from Eq. (3) that the superfluid velocity v is
given by (see Supplemental Material S1 E [5])

v ¼ ℏ
M

�
ð∇φÞ þ 1

2
ð∇χÞð1 − cos 2ηÞ

�
: ð5Þ

The second term, which is absent in a nonmagnetic spin-1
BEC, implies that a supercurrent can be generated by a
texture of the order parameter, the physical origin of
which is a spatial variation of the morphology of the
order parameter. The circulation of Eq. (5) along a two-
dimensional closed loop Cðx; yÞ gives
I
Cðx;yÞ

�
M
ℏ
v−ð∇φÞ

�
dl¼1

2

Z
S0ð2ηðx;yÞ;χðx;yÞÞ

dð1−cos2ηÞdχ;

ð6Þ

where S0½2ηðx; yÞ; χðx; yÞ� represents the surface of a unit
sphere in spin space swept by the polar coordinates ð2η; χÞ
when they are mapped from the region inside the loop C
on the x-y plane. The right-hand side of Eq. (6) may be
interpreted as one half of the Berry phase swept by the unit
vector n̂ with the azimuth angle χ and the polar angle 2η,
which is analogous to the circulation of a supercurrent in a
fully polarized BEC [2] except for the factor of 1=2.
To understand the correspondence between the super-

fluid circulations of a nonmagnetic spin-2 BEC and that of
a ferromagnetic BEC, we let α ¼ β ¼ γ ¼ 0 in Eq. (3)
without loss of generality, since the Euler angles specify
the direction of the order parameter but do not change its
morphology. Then the nonvanishing components of the
quardrupole, octupole, and hexadecapole moments are
given by (see Supplemental Material S2 for details [5])

Dxy ≡
ffiffiffiffiffi
5

21

r
ðF2

x − F2
yÞ; ð7Þ

Yhyp ≡
ffiffiffi
5

p

3
ffiffiffi
7

p ð−F2
x − F2

y þ 2F2
zÞ; ð8Þ

Txyz ≡
ffiffiffi
5

p

6
ffiffiffi
3

p FxFyFz; ð9Þ

Φs ≡
ffiffiffi
5

p

12
ðF4

x þ F4
y − F2

xF2
yÞ; ð10Þ

Φa ≡
ffiffiffi
5

p

6
ffiffiffi
7

p ðF4
x − F4

y þ F2
yF2

z − F2
zF2

xÞ; ð11Þ

Φz ≡ 1

12
ffiffiffi
7

p ð3F4
x þ 3F4

y þ 8F4
z

þ F2
xF2

y − 4F2
yF2

z − 4F2
zF2

xÞ; ð12Þ

where the coefficients are determined so as to
make the L − 2 norm of each matrix in Eqs. (7)–(12)
equal to that of Fμ ’s (see Supplemental Material
S2 [5]), and Fμ1 � � �Fμn denotes the symmetrized
product of Fμi ’s (μi¼x, y, z), that is, Fμ1 � � �Fμn ¼P

ðν1;…;νnÞ∈Sðfμ1;…;μngÞ Fν1 � � �Fνn where Sðfμ1;…; μngÞ is
the permutation group of a given set fμ1;…; μng [11]. The
physics behind the morphological supercurrent is a hidden
su(2) symmetry whose generators can be constructed from
Eqs. (7)–(12) as (see Supplemental Material S2 E for the
derivation [5])

N1 ¼
2ffiffiffi
7

p Dxy −
ffiffiffi
3

7

r
Φa; ð13Þ

N2 ¼ −Txyz; ð14Þ

N3 ¼ −
2ffiffiffi
7

p Yhyp −
1

2
Φs þ

ffiffiffi
5

p

2
ffiffiffi
7

p Φz: ð15Þ

Note that the structure factor of this algebra is 2
ffiffiffi
5

p
which

is to be distinguished from the usual spin su(2) subalgebra
with the unit structure factor. Substituting Eq. (3) into
Eqs. (7)–(12), we obtain the expectation values hNii’s of
Ni’s in Eqs. (13) and (14):

hN1i ¼
ffiffiffi
5

p
ρ cos χ sin 2η; ð16Þ

hN2i ¼
ffiffiffi
5

p
ρ sin χ sin 2η; ð17Þ

hN3i ¼
ffiffiffi
5

p
ρ cos 2η; ð18Þ

which form a vector hNi≡ ðhN1i; hN2i; hN3iÞT pointing
in the direction of n̂. In a spin-2 nonmagnetic BEC, n̂,

FIG. 1. Phase diagram and stereographically mapped polyhe-
drons plotted against χ and η in Eq. (3). The blue, red, and green
regions show the uniaxial nematic (UN), biaxial nematic (BN),
and cyclic (C) phases, respectively. Each polyhedron shows the
stereographic projection of the order parameter [i.e., the roots of
Eq. (4)] on the Bloch sphere.

PHYSICAL REVIEW LETTERS 124, 105301 (2020)

105301-2



which originates from the magnetic multipoles, plays the
role of the spin vector in a fully polarized BEC.
A nonmagnetic superflow can also be induced between

two weakly coupled BECs with different order-parameter
symmetries, which we refer to as a morphological
Josephson current. We assume that two nonmagnetic
BECs are placed on the left and right of a potential wall
in a well-localized manner. Then, the mean-field energy
functional can be well approximated as

Etot½ψL;ψR� ¼ E½ψL� þ E½ψR�

þ K
X2
m¼−2

Z
drðψ�

LmψRm þ ψ�
RmψLmÞ;

ð19Þ

where ψj (j ¼ L;R) represents the order parameters of the
left (L) and right (R) BECs, E½ψj� indicates the energy
functional of the BEC on side j, andK denotes the coupling
between them. When atoms interact via s-wave channels,
the energy functional E½ψj� is given by [15,16]

E½ψj� ¼
Z

dr

�
ℏ2

2M

X2
m¼−2

jð∇ψ jmÞj2 þUðrÞρj

þ
X2
m¼−2

qjm2ψ�
jmψ jm þ 1

2
ðc0ρ2j þ c1f 2j þ c2jAjj2Þ

�
;

ð20Þ

where qj denotes the quadratic Zeeman energy in each
well and the coupling strengths c0, c1, and c2 are given by
c0 ≡ ð4ℏ2=MÞð4a2 þ 3a4Þ, c1 ≡ ð4ℏ2=MÞða4 − a2Þ, and
c2 ≡ ð4ℏ2=MÞð7a0 − 10a2 þ 3a4Þ. Here, aF represents
the scattering length for binary collisions with the
total hyperfine spin F ¼ 0, 2, and 4, and ρj, f j ≡P

2
m;n¼−2ðFÞmnψ

�
jmψ jn, and Aj ≡P

2
m;n¼−2ðAÞmnψ jmψ jn

are the density, the magnetization vector, and the spin-
singlet amplitude with a five-by-five antidiagonal matrix
ðAÞmn ≡ adiagð1;−1; 1;−1; 1Þ= ffiffiffi

5
p

. The multicomponent
Gross-Pitaevskii equation for ψj can be obtained from
Eq. (19) as iℏðdψ jm=dtÞ ¼ δEtot=δψ�

jm, from which we
obtain dρL=dt ¼ −dρR=dt and

dρL
dt

¼ K
iℏ

X2
m¼−2

ðψ�
LmψRm − ψ�

RmψLmÞ: ð21Þ

To derive a general nonmagnetic current-phase relation,
let us take the initial order parameter in Eq. (3) with αj ¼
βj ¼ γj ¼ 0 and assume that ψj is uniform in each well and
decays exponentially on the other side of the potential
barrier. Then, the populations of the m ¼ �1 components
stay zero and those of the m ¼ �2 components remain

equal to each other, since no population transfer occurs
betweenm ¼ �2, 0 andm ¼ �1 and the energy functional
in Eq. (19) is symmetric with respect to exchange of the
m ¼ �2 states, from which we conclude that the order
parameter can be expressed as in Eq. (3) with αj ¼ βj ¼
γj ¼ 0 during the time evolution. Then, Eq. (21) reduces to

dρL
dt

¼ 2K
ℏ

ffiffiffiffiffiffiffiffiffiffi
ρLρR

p ½sinΔφðcosΔχ sin ηL sin ηR
þ cos ηL cos ηRÞ þ cosΔφ sinΔχ sin ηL sin ηR�;

ð22Þ

where Δφ≡ φR − φL and Δχ ≡ χR − χL. When the BEC
on the left side is in the biaxial nematic phase ðφL ¼
0; χL ¼ 0; ηL ¼ π=2Þ and the BEC on the right side is in the
cyclic phase ðφR ¼ Δφ; χR ¼ Δχ ≠ 0; ηR ¼ π=4Þ, Eq. (22)
gives

dρL
dt

¼
ffiffiffi
2

p
K

ℏ
ffiffiffiffiffiffiffiffiffiffi
ρLρR

p
sin ðΔφþ ΔχÞ; ð23Þ

which implies that the current flows depending on the
difference of the parameter χ determining the shape of
the order parameter and that of the U(1) gauge φ. Thus the
supercurrent flows in a manner depending on the difference
in the morphology of the order parameter between the left
and right BECs. This is essentially different from the
Josephson effect due to the Goldstone modes associated
with symmetry breaking from OðNÞ to OðN − 1Þ [17–20].
When the two BECs share the same morphology, Eq. (22)
reduces to the familiar Josephson relation caused by the
difference of the U(1) phase.
We now demonstrate the above general theory by

numerical simulation. The nonmagnetic supercurrent
given in Eq. (5) can be induced by a spatially varying
quadratic Zeeman effect. To demonstrate this, we consider
a cigar-shaped spin-2 BEC of 103 87Rb atoms, apply a
spatially varying quadratic Zeeman field, and examine
how the density profile of the BEC changes after the
quadratic Zeeman field is switched off. We assume
that the axial trapping frequency ωx ¼ 2π × 10 ½Hz� in
the x direction is much smaller than those in the radial
directions, i.e., ωx≪ωy, ωz¼2π×200 ½Hz� with the ratio
γ ≡ ffiffiffiffiffiffiffiffiffiffiffi

ωyωz
p =ωx ¼ 20. Then the mean-field dynamics of

the spin-2 BEC can be described by the following multi-
component Gross-Pitaevskii equation [21]:

iℏ
∂ψm

∂t ¼
�
−

ℏ2

2M
∇2 þ UðxÞ þ qðt; xÞm2

�
ψm

þ γ

2π

X2
n¼−2

ðfc0ρðt; xÞδmn þ c1½f ðt; xÞ · F�mngψn

þ c2Aðt; xÞðAÞmnψ
�
nÞ; ð24Þ
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whereM represents the mass of an 87Rb atom. The trapping
potential UðxÞ is assumed to be a box potential in the x
direction given by

UðxÞ ¼
�∞ ðjxj > L=2Þ;
0 ðjxj ≤ L=2Þ; ð25Þ

where L ¼ 50 × lx with lx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=Mωx

p
≈ 3.41 ½μm�. In

the numerical calculation, we set the height of the trapping

potential to be 102 × γc0=2π. We vary the quadratic
Zeeman field qðt; xÞ as

qðt; rÞ ¼
�
q0x2 ð0 ≤ t < TÞ;
0 ðt < 0 and t ≥ TÞ; ð26Þ

where q0 ¼ 10h and T ¼ 0.1=ωx. The scattering lengths
aF ’s for binary s-wave collisions with their total hyperfine

FIG. 2. Position dependences of the density profile and the morphology of the order parameter (upper panels) and the superfluid
velocity (lower panels) of a spin-2 BEC at t̃≡ ωxt ¼ 0, 0.1, 0.2, 0.4, 0.6, and 0.8. The quadratic Zeeman field is switched on during
t̃ ¼ 0–0.1. The coordinate, the density, and the superfluid velocity are normalized as x̃≡ x=lx,

R
dx̃ ρ̃ðt̃; x̃Þ ¼ 1, and ṽ ¼ v=lxωx.
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spins F ¼ 0, 2, and 4 are given by a0 ¼ 89.4aB,
a2 ¼ 94.5aB, and a4 ¼ 106aB with aB being the Bohr
radius [16]. The density profile ρð0; xÞ of the initial order
parameter is chosen to be the ground state of a scalar BEC
with the same potential UðxÞ and the interaction energy c0
is chosen to be the same as that used in Eq. (24). The initial
spin configuration is assumed to be spatially uniform and
given by ξðt ¼ 0; xÞ ¼ ð1; 0; ffiffiffi

2
p

; 0; 1ÞT=2 corresponding to
the biaxial nematic state (see Fig. 1). By numerically
solving Eq. (24) with the Crank-Nicolson method, the
multicomponent order parameter ψ can be obtained and the
dynamics of the density profile ρðt; xÞ, the superfluid
velocity vðt; xÞ, and the magnetization vector f ðt; xÞ can
be calculated from ψ. The density profile and the superfluid
velocity evolves in time as shown in Fig. 2, where
f ðt; xÞ ¼ 0, which implies that the BEC stays nonmagnetic
throughout the time evolution. As shown in Fig. 2, the
texture of the order-parameter morphology induces super-
flow without recourse to neither the U(1) gauge nor spin
textures.
In summary, we have found the third mechanism of

superflow originating from a spatial variation of the
morphology of the order parameter in nonmagnetic spin-
2 BECs. We have also discussed the morphological
Josephson current due to different symmetries of the order
parameter on the left and right sides of the potential barrier.
We have numerically demonstrated that the morphological
superflow can be generated by using a spatially varying
quadratic Zeeman effect.
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