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To clarify the role of wetting properties on the damping of liquid oscillations, we studied the decay of
oscillations of liquid columns in a U-shaped tube with controlled surface conditions. In the presence of
sliding triple lines, oscillations are strongly and nonlinearly damped, with a finite-time arrest and a
dependence on initial amplitude. We reveal that contact angle hysteresis explains and quantifies this
solidlike friction.
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Sloshing, i.e., the oscillations of liquids in tanks, is an
issue in mechanical engineering and daily life. It constitutes
a risk against the stability of tankers [1] and spacecraft, and
may lead to liquid spilling [2]. It is therefore important to
understand its damping. Sloshing is classically modeled by
determining the oscillation modes compatible with a given
tank shape using potential flow theory, supplemented by
viscous dissipation coming from bulk potential flow and
Stokes boundary layers along walls [1,3]. However, lab-
scale studies have revealed that dissipation predicted as such
underestimates the experiments, which also indicates a
dependence on the wall material [4,5]. This has been
tentatively ascribed to a source of dissipation localized
in the vicinity of the air-liquid-solid triple line. It echoes
several other configurations where wetting conditions affect
macroscopic flows, like Faraday waves [6], drop fall down
inclines [7,8], Torricelli’s law [9], or capillary rise [10,11].
However, there is no quantitative prediction relating wetting
properties to sloshing damping. In this Letter, we solve this
long-standing problem in the simplest sloshing configura-
tion: a liquid column oscillating in a U-shaped tube, which
may be described by a single degree of freedom, in contrast
with the infinite number of modes describing sloshing in
tanks [1,3].
We used two U-shaped glass tubes (Dutscher). One

was rendered hydrophilic using plasma treatment, and the
other hydrophobic by silanization with a silicon reagent
(Sigmacote, Sigma-Aldrich). The two straight arms of the
tubes have a constant inner radius a ¼ 8.15� 0.15 mm
[Fig. 1(a)], the curved part having a significantly smaller
cross section [not drawn inFig. 1(a) for simplicity]. The tubes
were carefully rinsed and dried with nitrogen between each
run, ensuring reproducible wetting conditions. We used two
liquids: ultrapure water (MilliQ) and absolute ethanol
(VWR). We characterized their wetting properties by depos-
iting droplets on glass slides treated similarly and simulta-
neously as the tubes, and slowly injecting or withdrawing

liquid from these droplets. From the onset of contact line
motion, we measured values for the advancing (θa) and
receding (θr) contact angles. Ethanol wetted perfectly the
hydrophilic slide; for water, θa ¼ ð15� 5Þ° and no signifi-
cant receding contact angle could be measured. On the
hydrophobic slide, θr ¼ ð68� 10Þ° and θa ¼ ð93� 2Þ° for
water, and for ethanol, θr ¼ ð28� 2Þ° and θa ¼ ð34� 2Þ°.
We studied the free decay of liquid oscillations as

follows. We injected a controlled volume in the tube,
making a liquid column of length l0 (controlled within
1 mm) along the tube centerline [Fig. 1(a)]. We plugged one
arm with a thin membrane under tension. We injected
through a flexible tube a controlled volume of air in the
resulting trapped air pocket, creating an initial height
imbalance 2h0 between the two contact lines. We pierced
the membrane with a needle, ensuring controlled initial
conditions, and recorded the subsequent oscillations of
one of the two interfaces with a camera (Thorlabs). By
image analysis, we extracted from the movies the position
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FIG. 1. (a) Sketch of the experiment. Snapshots of the air-liquid
interface for (b) water in the hydrophilic tube, and (c) water
and (d) ethanol in the hydrophobic tube. Arrows indicate the
location of the contact line, which position is measured along the
dashed lines.
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hðtÞ of the contact line along one given vertical line
[Figs. 1(b)–1(d)]; h ¼ 0 corresponds to equilibrium. We
checked that the contact line remains horizontal at all times.
Figure 2 shows the oscillation decay for both liquids in

both tubes, for the same column length and initial ampli-
tude. For water, the effect of wetting conditions is striking:
the oscillations are much more damped in the hydrophobic
tube. Moreover, the damping dynamics differs: while the
oscillations are exponentially damped in the hydrophilic
tube, the time evolution of log jhj displays a concave
envelope for the hydrophobic tube (inset of Fig. 2) with
a finite-time arrest of the oscillations, in marked contrast
with the classical view of oscillations damped by viscous

effects scaling linearly with velocity. Such increasing
damping rate as the amplitude of motion diminishes is
known to lead to finite-time arrest in different systems
[12,13]. To investigate further this qualitative difference in
damping, we study the decay of water oscillations for
different initial amplitudes h0. For the hydrophilic tube, the
time evolution of h=h0 is independent of h0, and is well
captured by an exponential decay [Fig. 3(a)]. On the
contrary, for the hydrophobic tube, the time evolution of
h=h0 depends on h0: the smaller the initial amplitude, the
faster the decay [Fig. 3(b)] and the shorter the time of arrest
of oscillations [inset of Fig. 3(b)]. Figures 2 and 3 thus
suggest that damping is linear, respectively, nonlinear, for
the hydrophilic, respectively, hydrophobic, tube. For etha-
nol, the oscillations are exponentially damped [Fig. 3(c)],
without dependence on the tube (Fig. 2), unlike water.
Henceforth, for simplicity, the measurements reported for
ethanol are for the hydrophobic tube only.
Visual inspection reveals another difference between

water in the hydrophobic tube and the other cases, where
at its first descent, the moving meniscus deposits a thin film
along the wall, and during most of the subsequent oscil-
lations, the interface slides over this film [see, e.g., inset of
Fig. 3(c)]. The conditions under which a liquid in partial
wetting can deposit a film in our experiments are discussed
in the Supplemental Material [14], and agree with existing
predictions [18]. Rigorously speaking, what we track is
thus an apparent contact line between the liquid bulk and
the film. On the contrary, for water in the hydrophobic tube,
no film seems to be deposited, hence the water column is
bounded by oscillating sliding triple lines.
Since bulk dissipation is always present, the qualitative

difference in damping comes from the different wetting
conditions. If a film is present, some dissipation comes
from the dynamic menisci between the film and the bulk of
liquid. Such a dissipation scales nonlinearly with the

FIG. 2. Plot of the interface height h vs time t, for water in the
hydrophobic (blue plain curve) and hydrophilic (green dash-dotted
curve) tubes, and ethanol in the hydrophobic (reddashed curve) and
hydrophilic (black dotted curve) tubes, with the same column
length l0 ¼ 10.6 cm and initial amplitude h0 ¼ 10.0� 0.3 mm.
Inset: plot of log jhj vs t. The straight lines are the best fits of
exponentially decaying envelopes.
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FIG. 3. Plot of the interface height h rescaled by the initial amplitude h0 vs time t for water in the (a) hydrophilic and (b) hydrophobic
tube, and (c) for ethanol. Values of l0 are indicated on each graph, and h0 ¼ 2.7� 0.1 (circle), 5.2� 0.5 (square), 10.3� 0.5 (slanted
triangle), and 20.3� 0.5 mm (cross mark). In (a) and (c), the plain curves are fit h ¼ h0e−αω0t=2 cosω0t, with best fitting parameters:
(a) ω0 ¼ 13.2 rad=s and α ¼ 0.076, and (c) ω0 ¼ 11.1 rad=s and α ¼ 0.083. (b) Data are fitted by Eq. (3) with α ¼ 0.12 as free fitting
parameter common for all experiments and μ given by Eq. (2) for h0 ¼ 2.7 (dotted curve), 5.2 (dash-dotted curve), 10.3 (dashed curve),
and 20.3 mm (plain curve). Insets: (b) Plot of the arrest time of oscillations t0 vs h0. The curve comes from the model t0 ¼
ð2=αω0Þ ln½1þ ðπ=4Þðα=μÞ� with α ¼ 0.12. (c) Raw space-time diagram along the dashed line of Fig. 1(d), showing (highlighted by
yellow dashes) the draining top of the thin film deposited at the first descent.
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sliding velocity [19,20]. In another context, it explains the
strong damping of sloshing by foam, where many dynamic
menisci are present all along the bubbles against the
walls [13,21]. However, the fact that the oscillations show
an exponential decay and no dependence on the initial
amplitude suggests that, for ethanol and water in the
hydrophilic tube, dissipation in dynamic menisci is negli-
gible compared to bulk dissipation, as checked in the
Supplemental Material [14]. For water in the hydrophobic
tube, some dissipation comes from the imbalance between
the advancing and the receding contact angles which
simultaneously, and alternatively, exist at both ends of
the oscillating column. This angle difference provides a
strongly nonlinear resistive force, already essentially
present in statics; this frictionlike force is known to pin
small enough water droplets on glass plates. We now model
its effect on the oscillation dynamics.
We model the oscillations of an incompressible liquid

column of curvilinear length l in a tube of constant radius a.
We aim at predicting the height hðtÞ of one contact line (the
other being at height−h).When h ≠ 0, the column oscillates
and relaxes towards equilibrium under the action of gravity,
viscous friction, and contact line friction. To simplify, we
take h as the sole degree of freedom; we thus model the
motion of the contact lines, but not of the air-liquid interfaces.
In anoscillatorymotionof angular frequencyω, for a liquid

of kinematic viscosity ν, viscous effects act over a thickness
of order δ ¼ ffiffiffiffiffiffiffiffi

ν=ω
p

from walls [22]. In our experiments, the
period is of order 0.5 s and ν ¼ 10−6 m2=s, hence
δ ≈ 0.3 mm ≪ a. Hence, the column experiences mostly a
pluglike flow, except close to the interfaces and in a thin
boundary layer close to the tube wall, and notwithstanding
possible secondary flows within the curved part of the tube
[23]. To estimate liquid inertia,we thus assume that the liquid
has a uniform velocity _h, with dots denoting time derivatives.
The equation of motion is then πρa2lḧ ¼ Fg þ Fv þ Fc,
with forces due to gravity (Fg), viscous friction (Fv), and
contact line friction in the presence of triple lines (Fc), as for
water in the hydrophobic tube; if they are absent, as for
ethanol or water in the hydrophilic tube, Fc ¼ 0.
Gravity force stems from the fall of the mass of liquid

of height 2h between the two interfaces, hence Fg ¼
−2πρga2h.
Viscous effects depend on whether the flow is laminar or

turbulent, which would lead, respectively, to Fv ∝ _h or _h2.
Contrary to the classical Reynolds criterion for steady
Poiseuille flows in straight tubes, there is no clear existing
criterion for the onset of turbulence in curved tubes [23];
Biery [24] established empirically that turbulence sets in
for B ¼ h20ω=ν larger than 3 × 104. For h0 ≈ 1 cm and
ω ≈ 10 rad=s, we have B ≈ 103 in our experiments, sug-
gesting a laminar regime. We henceforth assume that
Fv ¼ −α0 _h. We have also checked that Fv ∝ −j _hj _h does
not fit our measurements (data not shown).

For water in the hydrophobic tube, one of the contact lines
is advancing while the other is receding. Owing to contact
angle hysteresis, the water column experiences a force
corresponding to the different projections of the surface
tension forces at the contact lines along the direction of
motion. Hence, Fc ¼ 2πaγðcos θa − cos θrÞsignð _hÞ.
We introduce dimensionless height h̄ ¼ h=h0 and time

t̄ ¼ ω0t, with ω0 ¼
ffiffiffiffiffiffiffiffiffiffi

2g=l
p

the eigenfrequency. The equa-
tion of motion becomes

d2h̄
dt̄2

þ h̄ ¼ −α
dh̄
dt̄

− μsign
dh̄
dt̄

; ð1Þ

with two dimensionless dissipation parameters: a viscous
coefficient α ¼ α0ω0=2πρga2 taken as an adjustable param-
eter, and a friction coefficient

μ ¼ γðcos θr − cos θaÞ
ρgah0

: ð2Þ

The initial conditions are h̄ ¼ 1 and dh̄=dt̄ ¼ 0 at t̄ ¼ 0.
Equation (1) can be solved numerically or piecewise

analytically, but most insight comes from its analytical
resolution by the multiple-scale method in the limit of small
damping α ≪ 1 and μ ≪ 1, yielding the solution of Eq. (1)
(see Supplemental Material [14] for the derivation):

h̄ðt̄Þ ¼
�

−
4

π

μ

α
þ
�

4

π

μ

α
þ 1

�

e−αt̄=2
�

cos t̄; ð3Þ

if t̄ ≤ t̄0, and h̄ ¼ 0 if t̄ ≥ t̄0, with t̄0 ¼
ð2=αÞ ln½1þ ðπ=4Þðα=μÞ� the time of arrest of the oscil-
lations. The envelope shape varies from the classical
exponential damping as α ≫ μ (no nonlinear dissipation)
to a linear decay in time as μ ≫ α, like in solid friction.
We now compare the model to our measurements.

We start with the prediction of the eigenfrequency. To
do so, we measure the frequency of the damped oscillations
for ethanol in the hydrophobic tube, for which the oscil-
lations are mildly damped [Fig. 3(c)], hence the discrep-
ancy between the eigenfrequency and the frequency of
the damped oscillations negligible [25]. Technically, we
take the Fourier transform h̃ðωÞ of hðtÞ, and extract the
frequency as the peak of the power spectrum jh̃ðωÞj2. For
an accurate comparison, we must correct for the afore-
mentioned fact that the tube section is reduced in its curved
part. To do so in good approximation, we show in the
Supplemental Material [14] that it suffices to define l as the
sum of l0 and of an excess length defined from the cross-
section variations. In the inset of Fig. 4, we plot the
oscillation period versus l: it agrees with the prediction
ω0 ¼

ffiffiffiffiffiffiffiffiffiffi

2g=l
p

within 2.6%. Since this prediction is inde-
pendent on liquid properties, we assume that it also holds
for water. Concerning damping, in the absence of contact
line friction, Eq. (3) becomes: hðtÞ ¼ h0e−σt cosω0t, with
σ ¼ αω0=2. Figures 3(a) and 3(c) show that the data for
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water in the hydrophilic tube and for ethanol agree with
this prediction, with fitting parameters αphilicwater ¼ 0.076 and
αeth ¼ 0.083.
For water in the hydrophobic tube, we fit the

data with the dimensional version of Eq. (3): hðtÞ¼
h0f−ð4=πÞðμ=αÞþ½ð4=πÞðμ=αÞþ1�e−αω0t=2gcosω0t, with
α a fitting parameter and μ predicted by Eq. (2). Although α
might depend on l and h0, there is no prediction which
we can rely on; hence, we simply take this parameter
as a constant that we fit once and for all experiments.
Figure 3(b) shows that the data are very well fitted by the
model with best fitting parameter αphobicwater ¼ 0.12, except for
the lowest value of h0 for which the model slightly
underestimates the time of arrest of the oscillations t0.
The inset of Fig. 3(b) displays t0 as a function of h0,
showing an excellent agreement with the model.
To further test the model, we compare its predictions

with measurements for water in the hydrophobic tube at
fixed h0 but various l. An important prediction of the
model is that all data should then collapse on the same
master curve once rescaled on the dimensionless form h̄ðt̄Þ
given by Eq. (3). Figure 4 shows that it is indeed the case in
a very good approximation. This good agreement suggests
that our model includes the correct dissipations.
However, surprisingly, for water, the fitted viscous

coefficient for the hydrophobic tube αphobicwater ¼ 0.12 is larger
than for the hydrophilic tube αphilicwater ¼ 0.076. It is also
larger than that for ethanol (αeth ¼ 0.083), despite the larger
kinematic viscosity of ethanol (νeth ¼ 1.4 × 10−6 m2s,
while νwater ¼ 1.0 × 10−6 m2s). This suggests that contact

line sliding increases significantly the viscous dissipation,
more precisely the damping proportional to velocity. To
confirm this hypothesis and discard possible fitting artifacts,
we experimentally quantified the relaxation of the air-water
interface in the hydrophobic tube once the contact line is
pinned; see Supplemental Material [14] for details. Briefly,
this relaxation is well fitted by an exponential decay,
with a damping coefficient σpinnedwater which depends signifi-
cantly neither on l nor on h0. Averaging over all experi-
ments yields σpinnedwater ¼0.38�0.02 s−1, hence σeth=σ

pinned
water ¼

1.2 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

νeth=νwater
p

, as expected for unsteady viscous
flows [22].
Actually, viscous dissipation specifically associated with

contact line sliding is known for long, and implies that the
advancing, respectively, receding, contact angle increases,
respectively, decreases, with the sliding velocity V. When V
is constant, this is expressed by the Cox-Voinov (CV) law
[7,26,27]: θ3a ¼ θ3a;0 þ 9AρνV=γ and θ3r ¼ θ3r;0 − 9AρνV=γ,
where A ≃ 15 [28]. It is difficult to probe the instantaneous
values of the contact angles inside the tube [Fig. 1(c)], but
we can test their velocity dependences predicted by Cox-
Voinov law; they increase the value of the parameter μ
given by Eq. (2), and give rise to an extra effective viscous

coefficient αCV. More precisely, taking V ¼ j _hj ≈ h0ω0 ≈
0.1 m=s in our experiments, we evaluate 9AρνV=γ ≈ 0.2, 1
order of magnitude smaller than θ3r;0 ¼ 1.7 and θ3a;0 ¼ 4.3;
we can then linearize the Cox-Voinov law inserted in
Eq. (2) to get μ ¼ μ0 þ αCV _h with αCV ¼ 3Aνω0=ga.
This extra effective viscous coefficient is evaluated
as αCV ¼ 0.006, which is too small to explain the
mismatch between the viscous dissipation for water in
the sliding phase and in the pinned phase. In particular,
αphobicwater − αCV ¼ 0.11 remains larger than αphilicwater . This alto-
gether suggests that part of the viscous (more precisely,
velocity-linear) dissipation close to sliding contact lines
remains elusive.
The underestimation of viscous effects by Cox-Voinov

law has been pinpointed in other studies, especially on drop
motion [29,30]. There has been attempts to explain the
“missing” dissipation by marrying molecular effects at
triple lines with hydrodynamic approaches [31,32]; how-
ever, there is no current consensus [33]. Moreover, Cox-
Voinov law applies only for steady motions, and little
remains known on unsteady regimes [6]. Hence, a com-
pletely quantitative explanation of our dynamics would
require a thorough investigation of the hydrodynamics
close to sliding unsteady contact lines.
To conclude, we have shown that sliding contact lines

have a dramatic effect on the damping of liquid oscillations.
It induces nonlinear dissipation, reminiscent of solid
friction. We have proposed a successful predictive model,
highlighting the crucial role of contact angle hysteresis.
Perspectives include model refinement to account for the
motion of the air-liquid interfaces, which can continue to

FIG. 4. Plot of the rescaled height h̄¼h=h0 for h0¼9.3�0.7mm
as a function of the rescaled time t̄ ¼ ω0t for water in the
hydrophobic tube, for l ¼ 16.2 (cross mark), 18.2 (slanted
triangle), 20.2 (square), and 22.2 cm (circle). The curve is given
by Eq. (3) with α ¼ 0.12 as determined from the fit in Fig. 3(b),
and μ givenbyEq. (2). Inset: plot of the period of the oscillations vs
l for ethanol in the hydrophobic tube. The curve is the prediction
T ¼ 2π

ffiffiffiffiffiffiffiffiffiffi

l=2g
p

.
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vibrate once the contact line is pinned. More importantly,
we will revisit sloshing in tanks with this new quantitative
view on contact line friction, to try to propose an opera-
tional prediction of its effect in the presence of the more
complex, and possibly turbulent, sloshing flows.
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