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An intrinsic feature of turbulent flows is an enhanced rate of mixing and kinetic energy dissipation due to
the rapid generation of small-scale motions from large-scale excitation. The transfer of kinetic energy from
large to small scales is commonly attributed to the stretching of vorticity by the strain rate, but strain self-
amplification also plays a role. Previous treatments of this connection are phenomenological or inexact, or
cannot distinguish the contribution of vorticity stretching from that of strain self-amplification. In this
Letter, an exact relationship is derived which quantitatively establishes how intuitive multiscale
mechanisms such as vorticity stretching and strain self-amplification together actuate the interscale
transfer of energy in turbulence. Numerical evidence verifies this result and uses it to demonstrate that the
contribution of strain self-amplification to energy transfer is higher than that of vorticity stretching, but not
overwhelmingly so.
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Fluid turbulence is an archetypal nonlinear multiscale
phenomenon in classical physics. Encounters with turbu-
lent flows are ubiquitous in both the natural sciences and
engineering, due to the small viscosities of common fluids
like air and water relative to the typical sizes and velocities
in many flows. Turbulent flows are generally characterized
by a continuous spectrum of energetic length and time
scales, and understanding how these scales dynamically
interact is a cardinal matter for turbulence modeling. The
ability of turbulence to quickly produce small scale motions
from large-scale excitation has traditionally been charac-
terized as a “cascade” of energy, which has become a
linchpin for the study of turbulence physics [1–6].
The stretching of vorticity by the strain rate has been

traditionally viewed as the basic mechanism by which
energy is transferred from large to small scales [3,7,8]. In
this view, coherent regions of high rotation rate (or
vorticity) are preferentially subjected to extensional flow
(positive strain rate) along the axis of rotation. The
conservation of angular momentum requires an increase
in vorticity magnitude accompanied by a decrease in cross
section. The result is positive work done by the strain rate
on the vortex resulting in activity at smaller length scales
[9]. This concept of vortex stretching has been very
influential and many studies of interscale energy transfer
in turbulence have focused on it [10–14].
A statistical (or global) connection has been established

between the net amplfication of vorticity by the strain rate
and the net energy transfer to small scales using the
Karman-Howarth equations [15]. While the analogy to
material line stretching [7] is not perfect because vorticity
does not have the same alignment behavior as passive

material lines [16–18], the vorticity preferentially aligns
with the strain-rate eigenvector having the second largest
eigenvalue, which tends to be extensional [19–22].
The statistical connection between vorticity stretching

and the energy cascade is not unique, however. An equally
valid candidate mechanism is strain-rate self-amplification,
i.e., the steepening of compressive strain rates via nonlinear
self-advection [23]. The positive average vorticity stretch-
ing cannot be disentangled from positive average strain
self-amplification in homogeneous, or approximately
locally homogeneous, flows [24]. Furthermore, truncated
series expansions suggest that strain self-amplification
contributes three times more than vorticity stretching to
interscale energy transfer [25,26].
The notion of spectral blocking in two-dimensional

turbulence [27] due to the conservation of enstrophy
highlights in a more precise qualitative way that vorticity
stretching (which vanishes in 2D) is necessary for sustained
energy transfer toward small scales. However, strain self-
amplification also vanishes in 2D, and the same line of
reasoning applied to the dissipation rate demonstrates that
strain self-amplification is simultaneously necessary. Thus,
this approach cannot distinguish between the contribution
of vorticity stretching or strain self-amplification to the
energy cascade.
Explanations of vorticity stretching often invoke differ-

ent length scales of organized strain rate and vorticity,
but (unfiltered) velocity gradients emphasize dynamics at
the smallest scales [28]. Spatially filtered velocity gradients
are more suited to describe behavior in the inertial range
where the energy cascade is a dominant feature [29].
Previous approaches using spatial filtering and/or velocity
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increments [25,26,30] have connected inertial range inter-
scale energy transfer with vorticity stretching and strain
self-amplification, but have essentially done so by truncat-
ing an infinite series, which leaves uncertainty regarding
the role of neglected higher-order terms.
In this Letter, an exact connection is demonstrated

between interscale energy transfer, i.e., the “energy cas-
cade,” and spatiotemporally localized multiscale inter-
actions of vorticity and strain rate in a turbulent flow.
The derived relationship is verified using direct numerical
simulations, and then it is further leveraged to reveal the
true extent to which vorticity stretching and strain self-
amplification at various scales contribute to the transfer of
energy from large to small scales.
The velocity field, uðx; tÞ, of an incompressible turbu-

lent flow evolves according to

∂ui
∂t þ uj

∂ui
∂xj ¼ −

1

ρ

∂p
∂xi þ ν∇2ui þ fi; ð1Þ

where ρ is the fluid mass density, ν is the kinematic
viscosity of the fluid, and f is any forcing applied to the
fluid. The pressure field pðx; tÞ enforces the divergence-
free constraint ∇ · u ¼ 0. The velocity gradient tensor
Aij ¼ ∂ui=∂xj describes the local flow topology in
terms of strain rate Sij ¼ 1

2
ðAij þ AjiÞ and rotation rate

Ωij ¼ 1
2
ðAij − AjiÞ, which can also be expressed as the

vorticity vector ωi ¼ ϵijkΩkj.
A turbulent flow with mean kinetic energy hKi ¼

1
2
huiuii and mean dissipation rate hϵi ¼ 2νhSijSiji is

characterized by a wide range of length scales from an
integral length scale L ∼ hKi3=2hϵi−1 down to the
Kolmogorov length scale η ¼ ν3=4hϵi−1=4. The dynamic
range of a turbulent flow increases as L=η ∼ Re3=2λ , where
Reλ ∼ hKi= ffiffiffiffiffiffiffiffiffi

νhϵip
is the Taylor-scale Reynolds number.

The features of a turbulent velocity field larger than a
given scale l can be isolated using a low-pass filter [31],

ūli ¼ Gl⋆ui; Ffūli g ¼ FfGlgFfuig; ð2Þ

where Ff·g denotes the Fourier transform and ⋆ denotes
the convolution operator. The superscript, l in this case,
denotes the filter width. The evolution equation for the
large-scale dynamics is obtained by filtering Eq. (1),

∂ūli
∂t þ ūlj

∂ūli
∂xj ¼ −

1

ρ

∂p̄l

∂xi þ ν∇2ūli þ f̄li −
∂σlij
∂xj ; ð3Þ

where σlij ¼ uiujl − ūli ū
l
j represents an “effective stress”

on the large-scale velocity caused by features smaller than
l. The kinetic energy at scales larger than l is defined as
Elðx; tÞ ¼ 1

2
ūl
i ū

l
i , and elðx; tÞ ¼ 1

2
σlii represents the

kinetic energy at scales smaller than l. The large- and
small-scale energies evolve according to

∂El

∂t þ ∂Tl
i

∂xi ¼ ūli f̄
l
i − Πl − El; ð4Þ

∂el
∂t þ ∂tli

∂xi ¼ ql þ Πl − εl; ð5Þ

where Tl
i and t

l
i describe spatial redistribution of large- and

small-scale energy, respectively (see [31] for more details).
The molecular dissipation rate of large- and small-scale
energy is El ¼ 2νS̄lijS̄

l
ij and εl ¼ 2νðSijSijl − S̄lijS̄

l
ijÞ,

respectively. The work done by forcing on the small scales
is ql ¼ uifi − ūif̄i. The term Πl ¼ −σlijS̄lij appears in
these two equations with opposite sign, representing energy
transfer between large and small scales across scale l.
If energy is injected by forcing at large scales, then for
a(n) (approximately) steady homogeneous flow with
η ≪ l ≪ L, the energy balance becomes

huifii ≈ hūli f̄li i ≈ hΠli ≈ hεli ≈ hϵi: ð6Þ

For the present purposes, the validity of Eq. (6) defines the
inertial range of scales, where the exchange of energy
across l by Πl is from large to small scales in the mean in
order to facilitate the dissipation of kinetic energy pre-
dominantly at small scales.
In the following, a Gaussian low-pass filter,

GlðrÞ ¼ N e−jrj2=ð2l2Þ; FfGlgðkÞ ¼ e−jkj2l2=2; ð7Þ

with N ¼ ð2πl2Þ−3=2, is used to derive a spatiotemporally
local relationship between filtered velocity gradients and
the transfer flux of energy across l from large to small
scales. Figure 1 shows velocity magnitude on a slice in a
turbulent flow before and after the application of a
Gaussian filter. It may be readily seen from Eqs. (2) and
(7) that ūl is the solution of the diffusion equation,

FIG. 1. Unfiltered (left) and filtered (right) velocity magnitude
on a slice through the 3D forced isotropic turbulence simulation
at Reλ ¼ 400. A filter width of l ¼ 35η is used.
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∂ūli
∂ðl2Þ ¼

1

2
∇2ūli ; ūl¼0

i ¼ uiðx; tÞ; ð8Þ

where l2 is the timelike variable. Using the definition of σij
with Eq. (8), it is straightforward to show that the effective
subfilter scale stress may be obtained as a solution of a
forced diffusion equation,

∂σlij
∂ðl2Þ ¼

1

2
∇2σlij þ Āl

ikĀ
l
jk; σl¼0

ij ¼ 0; ð9Þ

where Āl
ij is the filtered velocity gradient tensor.

The solution to Eq. (9), with the Gaussian kernel as the
Green’s function, and can be written as

σlij ¼
Z

l2

0

dθ
�
Ā

ffiffi
θ

p
ik Ā

ffiffi
θ

p
jk

ffiffiffiffiffiffiffiffi
l2−θ

p �
: ð10Þ

In this way, the subfilter stress is the collective result of
contributions from velocity gradient fields filtered at all
scales

ffiffiffi
θ

p
smaller than l. The filter at

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − θ

p
projects

these contributions onto the larger scales.
The integrand of Eq. (10) bears some resemblance to the

nonlinear model [30,32] σlij ≈ l2Āl
ikĀ

l
jk, but differs from

such previous expressions in that Eq. (10) is exact rather
than an approximate relation formed by truncating an
infinite series. Furthermore, Eq. (10) straightforwardly
decomposes into scale-local and scale-nonlocal compo-
nents,

σlij ¼ l2Āl
ikĀ

l
jk þ

Z
l2

0

dθ
�
Ā

ffiffi
θ

p
ik Ā

ffiffi
θ

p
jk

ϕ
− Ā

ffiffi
θ

p
ik

ϕ
Ā

ffiffi
θ

p
jk

ϕ�
; ð11Þ

where ϕ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 − θ

p
. The first term on the right side of

Eq. (11) is “scale local” because it only involves quantities
resolved at scale l. The second term involves the difference
of the filtered product and the product of filtered quantities,
representing the contributions of subfilter scale velocity
gradients to the stress. This is considered “scale nonlocal”
because it contains velocity gradients at finer scales than l.
Contracting Eq. (11) with the filtered strain-rate tensor

forms an expression for Πl ¼ −σlijS̄lij. Then, substituting
the decomposition Aij ¼ Sij þΩij leads to

Πl ¼ Πl
l;S þ Πl

l;Ω þ Πl
nl;S þ Πl

nl;Ω þ Πl
nl;c;

where

Πl
l;S ¼ −l2S̄lijS̄

l
jkS̄

l
ki; Πl

l;Ω ¼ 1

4
l2ω̄l

i S̄
l
ijω̄

l
j ;

Πl
nl;S ¼ −

Z
l2

0

dθðS̄
ffiffi
θ

p
ik S̄

ffiffi
θ

p
jk

ϕ
− S̄

ffiffi
θ

p
ik

ϕ
S̄

ffiffi
θ

p
jk

ϕÞS̄lij;

Πl
nl;Ω ¼ 1

4

Z
l2

0

dθðω̄
ffiffi
θ

p
i ω̄

ffiffi
θ

p
j

ϕ
− ω̄

ffiffi
θ

p
i

ϕ
ω̄

ffiffi
θ

p
j

ϕÞS̄lij;

Πl
nl;c ¼

Z
l2

0

dθðS̄
ffiffi
θ

p
ik Ω̄

ffiffi
θ

p
jk

ϕ þ Ω̄
ffiffi
θ

p
ik S̄

ffiffi
θ

p
jk

ϕÞS̄lij: ð12Þ

The first two terms in (12) represent interscale energy
transfer by scale-local strain self-amplification (Πl;S) and
scale-local vorticity stretching (Πl;Ω), respectively. By
themselves, these two terms comprise the nonlinear model
of Ref. [32] and are given the subscript “l” to denote scale
local, expressing the fact that these terms involve only
quantities filtered at scale l. The remaining three terms
have the subscript “nl” for nonlocal, indicating that these
quantities involve smaller scales than l. These nonlocal
terms include interactions of scales only slightly smaller
than l, so a more intricate discussion of cascade locality is
included in the Supplemental Material [33]. The third and
fourth terms represent the amplification by strain at scale l
of subfilter strain (Πnl;S) and subfilter vorticity (Πnl;Ω). The
fifth term represents energy transfer by the resolved strain-
rate tensor acting on the subfilter correlation of strain rate
and vorticity. This energy exchange mechanism is less
intuitive and has not received much attention, with the
exception of [25].
The decomposition, (12), is exact and establishes a direct

relationship, at a particular location and time in a flow,
between the energy flux across scale l and the multiscale
interaction of vorticity and strain. This result enables the
systematic decomposition of turbulent interscale energy
transfer in terms of multiscale interactions such as vorticity
stretching and strain self-amplification.
To leverage this result, direct numerical simulations of

steady homogeneous isotropic turbulence were performed
using Eq. (1) in a triply periodic box with forcing f
specified such that the energy in the first two wave number
shells remains constant. Results for a simulation with
Reλ ¼ 400 having 10243 points in each direction are shown
here. The range of active length scales is L=η ¼ 460.
Figure 1 illustrates the numerical simulation and filtering
procedures.
The main features of energy transfer and dissipation in

the simulation are shown in Fig. 2 as a function of filter
width l. For increasing filter width above η, the resolved
dissipation rate El decreases sharply and most of the
viscous energy dissipation is unresolved for l ≫ η. On
the other hand, the sum of El and Πl is equal to the total
dissipation rate provided l ≪ L, which indicates the
forcing f is relatively inactive at these scales; see
Eqs. (4) and (5). Thus, for a range of scales η ≪ l ≪ L,
the net energy transfer is equal to the total dissipation rate
and Eq. (6) is approximately satisfied.
Figure 3 shows the net contribution from each of the five

terms in Eq. (12) as a function of filter size. The integrals
are evaluated using the trapezoidal rule with a discretization
over logarithmically distributed points in scale space (θ)
from 0.75η2 to l2 using roughly 15 points per decade. First,
it is important to point out that the derived relation Eq. (12)
is verified by the black line marked with star symbols
indicating hΠl

totali=hΠli ¼ 1. In other words, this verifies
that the ratio of the right and left sides of Eq. (12) is exactly
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unity for all filter widths. Next, consider separately each of
the five terms on the right side of Eq. (12). For l≲ η, the
nonlocal terms are small and the two local terms dominate.
The Betchov relation hΠl

l;Si ¼ 3hΠl
l;Ωi constrains the ratio

of the two local terms for any l in homogeneous incom-
pressible flows [24,26]. As a consequence, scale-local
strain self-amplification is responsible for three times more
net energy transfer than scale-local vorticity stretching at
any filter width.
For a range of scales approximately bounded by vertical

dashed gray lines in Figs. 2 and 3, the proportional
contribution of each term in Eq. (12) remains fairly
constant in this range of filter widths. The results show

that roughly half of the net interscale energy transfer in the
inertial range is accounted for by the local terms Πl

l;S and
Πl

l;Ω. The other half is contributed by their nonlocal
counterparts, Πl

nl;S and Πl
nl;Ω. In contrast to the scale-local

terms, the scale-nonlocal terms indicate an even division
between strain amplification and vorticity stretching on
average. Because of the “pirouette” effect [43], vorticity is
known to align more efficiently with larger-scale, slower
evolving strain rates than with the strain rate at the same
scale [44,45]. With more efficient vorticity stretching, the
net interscale energy transfer by scale-nonlocal interactions
is more evenly balanced between the two mechanisms.
To summarize, the fractional contributions of net inter-

scale energy transfer from each of the five mechanisms in
the inertial range can be approximately summarized as
hΠl

l;Si∶hΠl
l;Ωi∶hΠl

nl;Si∶hΠl
nl;Ωi∶hΠl

nl;ci ≈ 3∶1∶2∶2∶0.
Including scale-local and nonlocal terms together, the ratio
of contributions from strain self-amplification and vorticity
stretching is roughly hΠl

Si∶hΠl
Ωi ≈ 5∶3. This result stands

in contrast to both the traditional view which focuses
only on vorticity stretching, as well as more recent
views that strain self-amplification is the dominant
mechanism, including the view that overemphasizes that
hΠl

l;Si∶hΠl
l;Ωi ¼ 3∶1 due to the Betchov relation [26]. The

precise values found for these relative contributions are
reported in Fig. 3 and are not emphasized because of the
limited extent of inertial range provided by the present
simulation. Reynolds number effects are further explored in
the Supplemental Material [33], and future work at higher
Reynolds numbers can refine these results. Dependence on
filter shape is addressed in the Supplemental Material [33],
and it is expected that the main conclusions will hold for
other filter shapes [33].
In conclusion, an exact relationship between interscale

energy transfer and multiscale vorticity-strain interactions
is introduced and verified. This development disentangles
the respective impacts of vorticity stretching and strain self-
amplification on the energy cascade. Analysis of detailed
simulations reveals that, while scale-local strain self-
amplification provides three times the energy transfer as
scale-local vorticity stretching, it is just as important to
consider multiscale interactions. For scale-nonlocal inter-
actions, in fact, the net contribution by vorticity stretching
and strain self-amplification is roughly equal. As a result,
strain self-amplification is responsible for more net inter-
scale energy transfer than vorticity stretching, but not
overwhelmingly so. Both processes seem important in
the rapid production of small-scale motions in turbulence.
The present view of the interscale energy transfer will

facilitate a more detailed exploration of the energy cascade
in turbulence. For instance, the efficiency of the cascade is
known to be quite low [46], and the present results provide
a framework for future exploration of how the cascade
is driven by multiscale velocity gradient dynamics [43,45].

FIG. 2. The resolved dissipation rate and the net interscale
energy transfer as a function of scale using a Gaussian filter on
forced isotropic turbulence at Reλ ¼ 400. The vertical dashed
gray lines indicate l ¼ 30η and l ¼ 70η ¼ 0.15L.

FIG. 3. The fraction of net energy transfer, hΠli, accomplished
by the five mechanisms from Eq. (12). The horizontal dashed
lines are added manually to highlight the range of scales for
which the composition of interscale energy transfer is approx-
imately constant. The vertical dashed gray lines indicate l ¼ 30η
and l ¼ 70η ¼ 0.15L.
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In fact, the present work suggests that it may be more
advantageous to pursue shell models expressed in terms of
velocity gradients [47,48]. Also, the results shown here
have focused on the net energy transfer, but this quantity
fluctuates in space and time. Analysis of fluctuations and
negative transfer events, as well as investigations connect-
ing the present work with spatially coherent structures
[49,50], may also provide a deeper mechanistic under-
standing of turbulent dynamics. The approach outlined here
can be extended to flows with additional physics such as
stratification, rotation, chemical reactions, multiple phases,
and active matter.
The insights from this approach provide guidance for

advancing models for large-eddy simulations, which are
designed to provide accurate results despite underresolu-
tion of turbulent flows on coarse numerical grids [51,52].
The stretching of subfilter vorticity is an appealing basis for
models [53–56], but the analysis here reveals a path for
improving on such an approach.
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