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Optomechanical couplings involve both beam splitter and two-mode-squeezing types of interactions.
While the former underlies the utility of many applications, the latter creates unwanted excitations and is
usually detrimental. In this Letter, we propose a simple but powerful method based on cavity parametric
driving to suppress the unwanted excitation that does not require working with a deeply sideband-resolved
cavity. Our approach is based on a simple observation: as both the optomechanical two-mode-squeezing
interaction and the cavity parametric drive induce squeezing transformations of the relevant photonic bath
modes, they can be made to cancel one another. We illustrate how our method can cool a mechanical
oscillator below the quantum backaction limit, and significantly suppress the output noise of a sideband-
unresolved optomechanical transducer.
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Introduction.—Optomechanical systems couplemechani-
cal to electromagnetic degrees of freedom, and have a wide
range of utility in both classical and quantum settings [1,2].
Experiments almost always employ a strong electromagnetic
drive, with the resulting optomechanical coupling containing
both a beam splitter (BS) interaction and a two-mode-
squeezing interaction (TMSI). The BS interaction exchanges
phononic and photonic excitations, and underlies the
functionality of numerous optomechanical applications.
This includes cavity cooling of a mechanical mode, where
mechanical excitations are transferred to the dissipative
electromagnetic cavity [3,4]. It also includes the application
of quantum transduction: the mechanical oscillator and BS
interaction can be used to mediate microwave to optics
quantum state transfer [5–8], which is crucial for distributed
quantum information processing [6,9,10].
In these applications, the TMSI, which simultaneously

creates both motional and photonic excitations, is highly
undesirable. The standard strategy is to partially suppress
TMSI by making it highly nonresonant, via an appropriate
choice of drive frequency and the use of low-loss cavities
whose damping rate κ is much smaller than the mechanical
frequencyΩm. This however places stringent restrictions on
experimental platforms. For cavity cooling, the residual
TMSI sets the fundamental quantum backaction limit on the
lowest achievable mechanical occupancy [11,12]. This limit
prevents approaching the quantumground state for sideband
unresolved systems having κ ≳ Ωm. Strategies for ground
state cooling have been formulated for the latter systems
(e.g., dissipative coupling [13–16], coupling to trapped
atoms [17–19], photonic squeezing [20–23]); however, they
present their own implementation challenges. Similarly,
TMSI makes high fidelity quantum transduction impossible

in the sideband unresolved systems, and even constrains the
performance of sideband resolved systems [7,8]. Therefore,
sideband-resolving cavity is widely believed to be necessary
for efficient transduction [9], and we are not aware of any
correction strategy.
In this Letter, we propose simple but powerful strategies

to suppress the deleterious effects in sideband-unresolved
optomechanics applications. Our strategy is based on two
key observations. First, unwanted backaction effect arises
because the mechanical oscillator is driven by electromag-
netic vacuum noise that is squeezed by the TMSI. Second,
parametric (i.e., two-photon) driving induces additional
electromagnetic squeezing, so that the net squeezing of the
cavity backaction can be minimized by optimizing system
parameters. Remarkably, our strategy can completely
eliminate TMSI imperfections in sideband unresolved
systems in the typical operation regime of large co-
operativity but no strong coupling. In the case of cooling,
our strategy completely eliminates backaction heating. In
the case of transduction, parametric drive removes the
unwanted amplification of the input signal. With this
improvement, we are also able to obtain a new imped-
ance-matching condition and injected squeezing strategy,
which both improve the transmission bandwidth and
suppress the added noise of the output signal.
Parametrically driven optomechanics.—We consider a

generic optomechanical system where two cavities (â1 and
â2) are coupled to the same mechanical oscillator (âm) [see
Fig. 1(a)]; each cavity is subject to both a linear drive and a
parametric drive (PD), and the drive frequencies for each
cavity are commensurate. After making standard displace-
ment and linearization transformations [2], the mode
dynamics obey the Langevin equations
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Giðâiþ â†i Þ−i
ffiffiffi
γ

p
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m, respectively, describe the incident noise on cavity
i and the mechanical oscillator; we take Âin

i to correspond to
vacuum noise unless specified otherwise. The dynamical
matrixH contains all systemparameters:Δi, λi, κi, andGi are
the mode-drive frequency detuning, PD strength, dissipation
rate, and many-photon optomechanical coupling strength of
cavity i; Ωm and γ are the frequency and damping rate of
mechanical oscillator.
We focus attention on parameters where the detunings

are large enough that the system is dynamically stable when
Gi ¼ 0 and even without dissipation, i.e., jλij < jΔij. More
discussion about the general system stability is given in
Supplemental Material [24]. The Hamiltonian of each
isolated (but parametrically driven) cavity can be diagon-
alized in terms of a dressed (Bogoliubov) mode: α̂i ¼
eiϕi cosh riâi þ eiϕieiθi sinh riâ

†
i , for i ∈ f1; 2g. The trans-

formation parameters are

eiθi tanh 2ri ≡ λi=Δi; eiϕi ≡ μi=jμij; ð2Þ

where μi ≡ cosh ri − eiθi sinh ri. The evolution of the
dressed modes follow
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or in the compact form _α⃗ ¼ −iHα⃗þ KA⃗in [30]. The
dressed modes have modified detunings and optomechan-
ical coupling as Δ̃i ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2

i − jλij2
p

> 0 and Gi ≡ jμijGi, but
their dissipation rates remain κi. Hereafter, we implicitly
assume weak coupling and low mechanical dampling, i.e.,
γ ≪ G1, G2 ≪ Δ̃i, κi, which is the typical experimental
regime.
The noise-free dynamics of the dressed modes in Eq. (3)

corresponds to a standard optomechanical system with no
PD. This structure results from the optomechanical cou-
pling being a product of quadratures, a structure that is
preserved after a Bogoliubov transformation [31]. The
main difference in Eq. (3) is in the noise terms: the input
noise from the cavity baths now appears squeezed:

Âin
i ≡ eiϕi cosh riÂ

in
i − eiϕieiθi sinh riÂ

in†
i : ð4Þ

Hence, the PDs have allowed us to map our system (which
is driven by vacuum noise) to a standard optomechanical
system driven by squeezed noise.
As we will see, TMSI is detrimental because it induces

unwanted squeezing of the bath fluctuations; this squeezing
is large when κ ≳ Ωm. To correct such effects, our sys-
tematic strategy is to use PD to counteract this squeezing.
We first determine the PD parameters needed for this
compensation [cf. Eq. (4)] while keeping the dressed-mode
dynamics (as given byH) fixed. Next, we optimizeH for a
specific application. Finally, the experimentally relevant
“bare” system parameters (given by H) can be inferred.
Optomechanical cooling.—We first apply our strategy to

suppress the TMSI-induced backaction heating in optome-
chanical cooling. We consider the standard cooling setup
involving only one cavity, and thus decouple cavity 2 by
settingG2 ¼ 0. Themechanical steady state is determined by
its response to the various input noise operators [11]:
âm½ω� ¼ Â1ðωÞ þ ÂmðωÞ, where Ô½ω�≡ R

ÔðtÞeiωtdt.
Â1ðωÞ ½ÂmðωÞ� contains only the photonic (mechanical)
bath operators, and thus corresponds to the backaction
(thermal) heating.
Our focus is on the backaction part. In the typical

experimental regime of weak coupling and low mechanical
damping, the oscillator is mainly influenced by resonant
bath modes, i.e., ω ≈ Ωm. Near this frequency, the back-
action heating is determined by a squeezed version of the
input noise in Eq. (4):

Â1ðωÞ ∝ eiϕsðωÞ cosh rsðωÞÂin
1 ½ω�

þ eiϕsðωÞeiθsðωÞ sinh rsðωÞÂin†
1 ½ω�: ð5Þ

Parametric
drive +

standard
modes

No drive +
dressed
modes

(a) (b)

FIG. 1. (a) Generic optomechanical system described by
Eq. (1), where two parametrically driven cavities (â1, â2) couple
to a common mechanical oscillator (âm). (b) An equivalent
optomechanical system described by Eq. (3), which is not
parametrically driven but where both the bath and cavity modes
are squeezed. Both cavity modes 1 and 2 are involved in
transduction, but only cavity mode 1 is utilized in cooling (inside
green dotted box).
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The effective squeezing parameters are eiϕsðωÞ cosh rsðωÞ≡
Xm;1ðωÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jXm;1ðωÞj2 − jXm;1†ðωÞj2

q
, eiθsðωÞ tanh rsðωÞ≡

Xm;1†ðωÞ=Xm;1ðωÞ; XðωÞ≡ iðωI6 −HÞ−1K is the sus-
ceptibility matrix of the dressed modes; Ik is the k × k
identity.
This picture explains that standard optomechanical cool-

ing suffers from backaction heating because the mechanical
oscillator is experiencing a photonic bath that is squeezed
by the unwanted TMSI. Our strategy is then to tune the PD
so that the Âin

1 in Eq. (4) is already squeezed vacuum noise,
such that the additional squeezing in Eq. (5) results in a
simple vacuum noise in the vicinity of ω ≈Ωm. This
requires tuning 2ϕ1 þ θ1 ¼ θsðΩmÞ, and r1 ¼ rsðΩmÞ, so
the dominant bath mode reduces to vacuum noise:

Â1ðΩmÞ ∝ Âin
1 ½Ωm�; ð6Þ

this can be satisfied if the parameters follow [24]

λ1 ¼ Δ1 − Ωm − iκ1=2: ð7Þ

We note that although previous work provided numerical
evidence that parametric driving could be beneficial
[20,21], our analysis provides a physically transparent
and rigorous understanding of TMSI-induced backaction.
This understanding allows us to optimize the system
parameters in Eq. (7), which completely eliminates back-
action heating and thus allows cavity cooling to the ground
state in the deep sideband-unresolved regime.
Typical performance of our strategy is shown in Fig. 2(a),

where the backaction excitation, Nba, is suppressed far
below the quantum backaction limit in both the sideband

resolved (κ1 ≪ Ωm) and unresolved (κ1 ≳ Ωm) regimes. We
note that our PD strategy does not affect the heating of the
mechanics by its intrinsic bath, nor requires increasing
optomechanical coupling [24].
Finally, our theory also provides a simple explanation of

the injected squeezing (IS) strategy for sideband-unre-
solved cooling [22,23]. At first glance, both strategies
are not obviously related: while the IS strategy requires
arbitrarily strong squeezing in the bad cavity limit, the
stationary intracavity squeezing generated in our PD
approach is bounded by 3 dB [32]. Despite this crucial
difference, these strategies are connected: while we use PD
to counteract the bath squeezing produced by TMSI, the IS
strategy simply injects appropriately squeezed noise into
the cavity to get the same kind of cancellation. Explicitly,
the goal is hÂ†

1ðωÞÂ1ðΩmÞi ¼ 0, but now in Eq. (5), Âin
1 ½ω�

represents vacuum noise, and rsðωÞ and θsðωÞ characterize
the externally produced squeezing. Using this to determine
optimal values of the squeezing parameters reduces to the
same conditions found (via a slightly different argument) in
Refs. [22,24]. When comparing with the IS strategy, our
approach has a crucial practical advantage: it does not
require one to externally produce and then transfer with
high-fidelity a highly squeezed vacuum state. This avoids
the extra thermal noise induced due to transfer loss, which
is a major limitating factor of the IS strategy [22,23].
Nevertheless, these two strategies are complementary: the
PD strength needed for perfect backaction suppression can
be reduced if the photonic input noise is weakly squeezed.
Quantum transduction.—Optomechanical quantum

transduction is of enormous interest [5–8]. It requires
coupling two cavities (one microwave, one optical) to a
common mechanical oscillator, i.e., our setup described
in Eq. (1). We take the photonic baths to correspond
to coupling waveguides, and take system 1 (2) to be
the transducer input (output). The transduction is charac-
terized by the scattering of frequency modes A⃗out½ω�¼
A⃗in½ω�þKa⃗½ω�¼TðωÞA⃗in½ω�, where TðωÞ≡I6þiKðωI6−
HÞ−1K is the scattering matrix. An ideal transducer
requires a frequency mode to be completely transferred,
i.e., Âout

2 ½ω0� ¼ Âin
1 ½ω0� at an optimal frequency ω0. In

practice, such a condition is usually not satisfied at any
ω due to system imperfections.
To focus on the imperfection due to TMSI, we neglect

the mechanical loss (i.e., γ → 0). The general transforma-
tion of a frequency mode is

Âout
2 ½ω� ¼ T2;1ðωÞÂin

1 ½ω� þ ĴðωÞ; ð8Þ

where ĴðωÞ≡ ĴTðωÞ þ ĴRðωÞ contains all the unwanted
components being mixed into the transmitted mode by
TMSI: ĴTðωÞ≡ T2;1†ðωÞÂin†

1 ½ω� is introduced by the
unwanted squeezingof the input, and theunwanted reflection
is represented by ĴRðωÞ≡ T2;2ðωÞÂin

2 ½ω� þ T2;2†ðωÞÂin†
2 ½ω�.

0.1 0.5 1 5 10

10 6

10 4

0.01

1
standard
with PD

0.1 0.5 1 5 10

0.1

1

10

backaction limit

FIG. 2. Cavity backaction heating of the mechanics as a number
of quanta Nba ¼ ð1=2πÞ R hÂ†

1ðωÞÂ1ðω0Þidωdω0, versus side-
band resolution parameter κ1=Ωm. Δ̃ ¼ Ωm, γ ¼ 10−5Ωm, and
G1 is tuned to keep the cooperativity as G2

1=κ1γ ¼ 10. At each
value of κ1, the standard (orange) and PD systems (blue) share the
same H. Optimal PD reduces Nba to below quantum backaction
limit (dashed) ½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ðκ1=2ΩmÞ2

p
− 1�=2 [11,12]. The remaining

excitation is due to nonvanishing but narrow mechanical line-
width (∼G2

1=κ1) [24]. (Inset) Cavity mode detuning Δ1 and PD
strength jλ1j for producing the same H.
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In analogy to a linear amplifier, the performance of a
bosonic transducer can be quantified by its added noise
spectral density, i.e., how much extraneous noise is added
to the output state [33]

2πηðωÞSðωÞδðω − ω0Þ≡ 1

2
hfĴðωÞ; Ĵ†ðω0Þgi; ð9Þ

where ηðωÞ≡ jT2;1ðωÞj2 is the conversion efficiency. For
uncorrelated baths 1 and 2, their bosonic properties set a
fundamental lower-bound on the added noise [24]:

SðωÞ ≥ RðωÞ
2

þ
���� 1 − ηðωÞ

2ηðωÞ þRðωÞ
2

����: ð10Þ

Noiseless transduction thus requires a unit conversion effi-
ciency, ηðωÞ→1, and a vanishing conjugated transmission
(i.e., amplification), RðωÞ≡ jT2;1†ðωÞj2=jT2;1ðωÞj2→0, at
an optimal frequency ω → ω0.
These conditions are generally not satisfied at any ω for

sideband unresolved optomechanical transducers, however
we here show that they can be systematically achieved by
parametrically driving only the input cavity â1, and inject-
ing squeezing to (but not parametrically driving) the output
cavity â2. Our strategy again consists of tuning the PD and
system parameters in such a way that the dressed-mode
dynamical matrix H [and hence dressed-mode scattering
matrix T ðωÞ≡ I6 þ KXðωÞ] remains unchanged. The
relation between the dressed-mode and original-mode
scattering matrices is

A⃗out½ω� ¼ TðωÞA⃗in½ω� ¼ F−1T ðωÞF A⃗in½ω�; ð11Þ

where the PD-induced squeezing is described by F 1 ≡
ð eiϕi cosh r1
−e−iϕ1e−iθ1 sinh r1

−eiϕ1eiθ1 sinh r1
e−iϕ1 cosh r1

Þ and F ≡ diagðF 1; I4Þ. For
simplicity, we assume all dressed modes are resonant, i.e.,
Δ̃1 ¼ Δ̃2 ¼ Ωm, although a generalization beyond this
regime is straightforward.
To correct the unwanted amplification [i.e., RðωÞ ≠ 0],

we first consider the transmission block of the
scattering matrix in Eq. (11), which gives T2;1†ðωÞ¼
e−iϕ1 coshr1T 2;1†ðωÞ−eiϕ1eiθ1 sinhr1T 2;1ðωÞ. At any spe-
cific ω, the TMSI-induced amplification can be corrected
by a PD-induced squeezing, such that T2;1†ðωÞ ¼ 0. The
required squeezing parameters follow

ei2ϕ1eiθ1 tanh r1 ¼ T 2;1†ðωÞ=T 2;1ðωÞ: ð12Þ

Apart from correcting unwanted amplification by PD, we
also need to choose the system parameters that yield unity
conversion efficiency ηðωÞ ¼ 1. From the detailed expres-
sion of conversion efficiency [24], we find that it is
maximized when Γ1 ¼ Γ2, where

Γi ≡ 4G2
i

κi
−

ðκi=4ΩmÞ2
1þ ðκi=4ΩmÞ2

4G2
i

κi
: ð13Þ

Γi is nothing but the net optical damping rate of the
mechanics due to cavity; the condition Γ1 ¼ Γ2 can thus be
seen as a generalized impedance matching condition.
Because of the TMSI-induced amplification, the peak

efficiencywill in general be higher than unity [maxðηÞ > 1],
which prevents optimizing the added noise. To optimize this
added noise over a reasonable bandwidth, it is thus desirable
to deliberately impedance mismatch the system so that
maxðηÞ ¼ 1. This requires satisfying the modified imped-
ance matching condition [24]:

�
1þ

�
κ2
4Ωm

�
2
�� ffiffiffiffiffiffiffiffiffiffi

Γ1Γ2

p
ðΓ1 þ Γ2Þ=2

�
2

¼ 1: ð14Þ

With this choice, the conversion efficiency is close
to unity for the frequency modes around ω0 ¼
Ωm − ðκ1Γ1 þ κ2Γ2Þ=8Ωm.
Finally, achieving the lower bound in Eq. (10) also

requires optimizing the input noise injected into the output
of our transducer (i.e., â2). At the optimal frequency where
ηðω0Þ ¼ 1 and Rðω0Þ ¼ 0 (hence ĴTðω0Þ ¼ 0), the added
noise only involves the cavity-2 bath, via the operator
ĴRðω0Þ. We find that the commutation relation of Eq. (8)
imposes jT2;2ðω0Þj ¼ jT2;2†ðω0Þj, which requires the real
and imaginary parts of ĴRðω0Þ to be two distinct but
commuting quadrature operators. As such, the added noise
can be suppressed by injecting to cavity-2 a bath that is
squeezed in both of these quadratures. In practice, this
squeezing is achievable by having broadband single-
mode squeezing. Explicitly, we consider a squeezed
bath with correlations hÂin†

2 ðtÞÂin
2 ðt0Þi¼δðt−t0Þsinh2s and

hÂin
2 ðtÞÂin

2 ðt0Þi ¼ δðt − t0Þeiϑ sinh s cosh s. By evaluating
Eq. (9), the added noise at ω ¼ ω0 is suppressed for
increasing squeezing strength s: Sðω0Þ ¼ e−2sjT2;2†ðω0Þj2
when the squeezing phase is optimized as eiϑ ¼
−T2;2†ðω0Þ=T2;2ðω0Þ.
The performance of a typical optomechanical transducer

that is only weakly sideband resolved is shown in Fig. 3. As
shown, our approach gives a marked improvement in the
transduction fidelity. We note that even when there is
mechanical loss, γ ≠ 0, our PD strategy would not amplify
the additional contribution to the transducer added noise
coming from the intrinsic mechanical bath. This is because
such noise is determined by the scattering amplitudes
T2;mðωÞ and T2;m†ðωÞ, which is unaltered if the system
parameters are tuned to preserve H [cf. Eq. (11)].
Our strategy can improve the performance of micro-

wave-optics transducer, which is a crucial component in a
superconducting quantum computer network [5]. For
microwave-to-optics transfer, our strategy requires a micro-
wave-cavity PD and injected optical squeezing, which both

PHYSICAL REVIEW LETTERS 124, 103602 (2020)

103602-4



have been realized with high quality [36–39]. For the
reverse direction (i.e., optics-to-microwave), an optical-
cavity PD is instead required. With numerous exciting
prospects [40–43], optical-cavity PD has been experimen-
tally implemented by embedding nonlinear crystals in
optical cavities [39,44,45] or fabricating microcavities with
nonlinear materials [38,46].
Alternatively, one can apply our strategy for optics-to-

microwave transfer without any need for an optical-cavity
PD by combining it with quantum teleportation [34,47]
(more details and schematic illustration are given in
Supplemental Material [24]). One first prepares a micro-
wave two-mode-squeezed state, injecting one half into a
microwave-to-optics transducer, emerging at the output of
the optical cavity. The input optical state to be transduced is
not injected into the transducer; instead, one makes a
continuous-variable Bell measurement on this state and the
optical-cavity output state. After feed forward, the original
optical input state can be recovered from the remaining half

of the microwave two-mode-squeezed state. This method
replaces the technically challenging optical parametric
drive by highly efficient microwave squeezing [48–51]
and optical homodyne detection [52].
Conclusion.—In this work we study the backaction

effects of TMSI in sideband unresolved optomechanical
systems. We show that most detrimental effects originate
from the squeezing of photonic bath, which can be
corrected by a controlled squeezing through parametrically
driving the photonic cavity. We show explicitly how our
strategy can eliminate backaction heating in optomechan-
ical cooling, and correct unwanted amplification in quan-
tum transduction. Although our analysis is focused on
optomechanical systems, the technique is also applicable to
eliminate TMSI-induced unwanted effects in other hybrid
quantum platforms, such as electro-optical [53–55] and
magnomechanical systems [56].

This work is supported by the AFOSR MURI FA9550-
15-1-0029 on quantum transduction, and the DARPA
DRINQS program (Agreement No. D18AC00014).

Note added.—Recently, we became aware of the appear-
ance of related articles, Refs. [57,58], which also discuss
improved optomechanical cooling with parametric drive.
However, these works do not consider the application of
parametric drive in quantum transduction.

*hklau.physics@gmail.com
[1] C. K. Law, Phys. Rev. A 51, 2537 (1995).
[2] M. Aspelmeyer, T. J. Kippenberg, and F. Marquardt, Rev.

Mod. Phys. 86, 1391 (2014).
[3] J. D. Teufel, T. Donner, D. Li, J. W. Harlow, M. S. Allman,

K. Cicak, A. J. Sirois, J. D. Whittaker, K. W. Lehnert, and
R.W. Simmonds, Nature (London) 475, 359 (2011).

[4] J. Chan, T. P. M. Alegre, A. H. Safavi-Naeini, J. T. Hill, A.
Krause, S. Gröblacher, M. Aspelmeyer, and O. Painter,
Nature (London) 478, 89 (2011).

[5] A. H. Safavi-Naeini and O. Painter, New J. Phys. 13,
013017 (2011).

[6] C. A. Regal and K.W. Lehnert, J. Phys. Conf. Ser. 264,
012025 (2011).

[7] R. W. Andrews, R. W. Peterson, T. P. Purdy, K. Cicak, R. W.
Simmonds, C. A. Regal, and K.W. Lehnert, Nat. Phys. 10,
321 (2014).

[8] A. P. Higginbotham, P. S. Burns, M. D. Urmey, R. W.
Peterson, N. S. Kampel, B. M. Brubaker, G. Smith, K. W.
Lehnert, and C. A. Regal, Nat. Phys. 14, 1038 (2018).

[9] L. Tian, Ann. Phys. (Amsterdam) 527, 1 (2015).
[10] G. Kurizki, P. Bertet, Y. Kubo, K. Molmer, D. Petrosyan, P.

Rabl, and J. Schmiedmayer, Proc. Natl. Aacd. Sci. U.S.A.
112, 3866 (2015).

[11] F. Marquardt, J. P. Chen, A. A. Clerk, and S. M. Girvin,
Phys. Rev. Lett. 99, 093902 (2007).

[12] I. Wilson-Rae, N. Nooshi, W. Zwerger, and T. J. Kippenberg,
Phys. Rev. Lett. 99, 093901 (2007).

0.94 0.96 0.98 1.00 1.02 1.04 1.06
0.01

0.10

1

10

100

0.05

0.10

0.50

1

5

10

with PD, 10dB injected sqz.
with PD, no injected sqz.

unity

standard,

with PD, Eq.(14)

with PD,

(a)

(b)

standard

classical limit

C
on

ve
rs

io
n

ef
fic

ie
nc

y
A

dd
ed

 n
oi

se

teleport, 10dB injected sqz.

FIG. 3. (a) Conversion efficiency ηðωÞ of optomechanical
transducers with Δ̃1¼ Δ̃2¼Ωm, κ1¼κ2¼5Ωm, and G2¼0.1Ωm.
(Grey) standard transducer: no PD and Γ1 ¼ Γ2. (Green) optimal
PD in (12) with Γ1 ¼ Γ2. (Red) our strategy: optimal PD and
modified impedance matching in Eq. (14). Transduction windows
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impedance matching (red shaded) yields a much wider bandwidth
than pickingΓ1 ¼ Γ2 (green shaded). (b) Added noise SðωÞ for the
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