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A manifestly Lorentz invariant action is found for the Floreanini-Jackiw chiral boson. The method
involves a novel chiral reduction of the phase-space action for a string and can be adapted to describe chiral
bosons on the heterotic string worldsheet. A similar manifestly Lorentz invariant action is found for
an entire class of conformal chiral 2k-form electrodynamics in (4kþ 2) dimensions which includes the
Floreanini-Jackiw theory as the k ¼ 0 case.
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Maxwell’s conformal-invariant equations for electrody-
namics have a natural generalization to n-form electrody-
namics in a Minkowski spacetime of 2ðnþ 1Þ dimensions,
and these equations are derivable from a Lorentz-invariant
action quadratic in the gauge-invariant (nþ 1)-form field
strength (see e.g., [1]). For n ¼ 2k one may consistently
impose a self-duality condition on this (2kþ 1)-form;
the resulting parity-violating, but still conformal invariant,
equations are those of “chiral 2k-form electrodynamics”
(see e.g., [2]). However, the self-duality condition makes it
difficult to find a manifestly Lorentz-invariant action [3],
which greatly complicates any attempt to include inter-
actions. Many solutions to this problem have been pro-
posed, each with some feature that could be considered
undesirable; the most relevant here is that of Pasti et al. [4]
and the most recent is that of Sen [5] to whom we defer for
references to other proposals.
The focus here will be on a class of chiral 2k-form

electrodynamics that includes, as the k ¼ 0 case, the chiral
boson theory of Floreanini and Jackiw [6]. This is a
conformally invariant free-field theory for a scalar field
φ in a 2-dimensional Minkowski spacetime. For time-space
coordinates (t, σ) the Floreanini-Jackiw (FJ) action is

SFJ½φ� ¼
Z

dt
Z

dσð _φ − φ0Þφ0; ð1Þ

where the overdot indicates a partial time derivative and a
prime indicates a derivative with respect to σ. The corre-
sponding field equation is

∂−φ
0 ¼ 0

�
∂� ¼ 1

2
ð∂t � ∂σÞ

�
: ð2Þ

This is similar to the manifestly Lorentz invariant free
chiral boson equation ∂−φ ¼ 0, but with φ0 replacing the
scalar field φ. Neither the FJ action nor its field equation is
manifestly Lorentz invariant but the first-order variation
of the action under a Lorentz transformation is a surface
term [6], and this implies Lorentz invariance of Eq. (2); its
general solution is

φ ¼ φ0ðtÞ þΦðξþÞ ðξ� ¼ t� σÞ; ð3Þ

but the zero mode is unphysical because the FJ action
has a (restricted) gauge invariance: φðξÞ → φðξÞ þ aðtÞ for
arbitrary function aðtÞ.
One purpose of this Letter is to show that the FJ action is

a gauge-fixed version of a manifestly Lorentz invariant
action constructed from fields that transform linearly under
the Lorentz group. This “covariant” action can be inter-
preted as a “chiral dimensional reduction” of the action for
a string in a three-dimensional (3D) spacetime, and the
method can be adapted to provide a covariant action for
chiral bosons on the heterotic string.
Another purpose of this Letter is to show that the

FJ chiral boson theory, in both its original and
covariant forms, is the special k ¼ 0 case of a class
of conformal chiral 2k-form electrodynamics in a
(4kþ 2)-dimensional Minkowski spacetime. The k ¼ 1
case and its relation to the M5-brane [7,8] will be briefly
reviewed towards the end of this Letter before consid-
eration of k > 1.
We begin with the 3D string of tension T. Let fXm;m ¼

0; 1; 2g be Minkowski spacetime coordinates and let (t, σ)
now be arbitrary worldsheet coordinates. Prior to chiral
reduction, the phase-space action is
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S ¼
Z

dt
Z

dσf _XmPm − eH⊥ − uHkg; ð4Þ

where the worldvolume fields Pm are canonically conjugate
to the maps Xm from the worldsheet to spacetime, and (e, u)
are Lagrange multipliers for phase-space constraints. The
constraint functions are

H⊥ ¼ 1

2
½ηmnPmPn þ T2ηmnðXmÞ0ðXnÞ0�;

Hk ¼ ðXmÞ0Pm: ð5Þ

As is well known, these constraints are first class and their
Poisson bracket (PB) algebra is the Lie algebra of the
infinite-dimensional 2D conformal group. The gauge trans-
formations generated by the constraints are on-shell equiv-
alent to worldsheet diffeomorphisms.
We shall now break the 3D Lorentz invariance to 2D

Lorentz invariance by making the identification X2∼X2þ
2πR. On setting

X2 ¼ Rφ; RP2 ¼ Pφ; ð6Þ

we get a phase-space action of the form

S ¼
Z

dt
Z

dσf _XμPμ þ _φPφ − eH⊥ − uHkg; ð7Þ

where μ ¼ 0, 1 and φ ∼ φþ 2π. We shall suppose (in units
for which ℏ ¼ 1) that

TR2 ¼ 1; ð8Þ

in which case the constraint functions can be written as

H⊥ ¼ 1

2
½P2 þ TðP2

φ þ ðφ0Þ2Þ þ T2ðX0Þ2�;
Hk ¼ ðXμÞ0Pμ þ φ0Pφ; ð9Þ

where P2 ¼ ημνPμPν and ðX0Þ2 ¼ ημνðXμÞ0ðXνÞ0. The sur-
viving 2D Lorentz group has only one generator, a Lorentz
boost, and its Noether charge is

L ¼
Z

dσðX0P1 − X1P0Þ: ð10Þ

To get some intuition into what has been done so far, we
may impose the following Monge gauge conditions:

X0 ¼ t; X1 ¼ σ: ð11Þ

In this gauge the constraints can be solved for Pμ:

P0 ¼∓
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½T þ ðφ0Þ2�½T þ P2

φ�
q

; P1 ¼ −φ0Pφ: ð12Þ

Notice that the energy density P0 has no T → ∞ limit
unless we subtract T from it. This may be achieved by
making the following replacement in the constraints:

Pμ → Pμ ¼ Pμ ∓ TεμνðXνÞ0: ð13Þ

This has no effect on the algebra of constraint functions but
in the Monge gauge we now have

P0 ¼ P0 ∓ T; P1 ¼ P1; ð14Þ

where the Pμ are as in (12). For the same sign choice as
before we now have the Hamiltonian density

P0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½T þ ðφ0Þ2�½T þ P2

φ�
q

− T: ð15Þ

Notice that

lim
T→∞

P0 ¼ 1

2
½P2

φ þ ðφ0Þ2�: ð16Þ

In this limit, elimination of Pφ yields the standard Lorentz
invariant free-field action for massless scalar field φ.
To get a chiral boson action from the string action (7)

we must include an additional constraint: P2 ≡ TX0
2. Given

the periodic identification of X2 and the relation (8), this
constraint is equivalent to

χðσÞ≡ 0; χ ¼ Pφ − φ0: ð17Þ

Expansion of χðσÞ on a set of basis functions yields one
zero mode [generator of the φ → φþ aðtÞ gauge trans-
formation of the FJ theory] and a set of second-class
constraints which would require, for some purposes, a
replacement of Poisson brackets by Dirac brackets. This
complication can be avoided by simply substituting φ0 for
Pφ in (7) to get the new action

S ¼
Z

dt
Z

dσf _XμPμ þ _φφ0 − eH⊥ − uHkg; ð18Þ

where now

H⊥ ¼ 1

2
½P2 þ 2Tðφ0Þ2 þ T2ðX0Þ2�;

Hk ¼ ðXμÞ0Pμ þ ðφ0Þ2: ð19Þ

We have included here the replacement of (13), which
affects onlyH⊥. The canonical PB relations determined by
this action are

fXμðσÞ; PνðςÞgPB ¼ δμνδðσ − ςÞ;

fφðσÞ;φðςÞgPB ¼ −
1

2
ϵðσ − ςÞ; ð20Þ
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where ϵ0ðσÞ ¼ δðσÞ; the second line is also the Dirac
bracket relation required for consistency with the chirality
constraint when this is introduced via a Lagrange multiplier
field. It is convenient to choose a functional basis for the
other constraints by defining

H⊥½β� ¼
Z

dσ βH⊥; Hk½α� ¼
Z

dσ αHk; ð21Þ

where α is a 1D vector field and β a scalar inverse-density,
equivalent to a vector field in 1D. Assuming that (α, β) are
smooth, and have compact support, one finds that

fH⊥½β�; H⊥½β̃�gPB ¼ T2Hk⟦β; β̃⟧;

fHk½α�; H⊥½β�gPB ¼ H⊥⟦α; β⟧;
fHk½α�; Hk½α̃�gPB ¼ Hk⟦α; α̃⟧; ð22Þ

where [·, ·] indicates a commutator of (1D) vector fields. As
this is the same result that one finds prior to the introduction
of the chirality constraint, we may again impose the Monge
gauge conditions (11) and solve the constraints for Pμ,
but this now yields (for the same sign choice as before) the
T-independent result

P0 ¼ −ðφ0Þ2; P1 ¼ −ðφ0Þ2: ð23Þ

This gives P0 ¼ ðφ0Þ2, and the Monge gauge action
becomes the FJ chiral boson action (1).
We have now found a covariant action for the FJ chiral

boson equation but, as things stand, this has been
accomplished at the cost of introducing the dimensionful
constant T. Moreover, this T dependence cannot be
removed from the covariant action by taking T → ∞
because the PB algebra of its constraint functions is
singular in this limit. However, one can take the T → 0
limit; in this case

H⊥ ¼ 1

2
P2; Hk ¼ ðXμÞ0Pμ þ ðφ0Þ2: ð24Þ

Apart from the fact that the string worldsheet fills the 2D
spacetime, implying an absence of any dynamics if φ0 ≡ 0
the constraints are those of the null, or tensionless, string
[9] modified by the ðφ0Þ2 term in Hk. This suggests a null-
string dust [10] interpretation, and hence conformal invari-
ance, which is readily verified: the corresponding Noether
charges are

QðkÞ ¼ −
Z

dσ kμðXÞPμ ð25Þ

for any 2D conformal Killing vector field kðXÞ.
A covariant action for the FJ chiral boson has now been

found via the introduction of additional fields that can be
removed by gauge fixing, as for the PST method [4] but

here the Lorentz group acts only on the additional fields.
Moreover, it acts as an “internal” symmetry that becomes a
2D spacetime Lorentz symmetry only after gauge fixing;
this happens because the Monge gauge condition is Lorentz
invariant only if a Lorentz transformation is combined
with a “compensating” worldsheet diffeomorphism. As the
Lorentz boost Noether charge of (10) is diffeomorphism
invariant, we may find the Lorentz boost Noether charge
of the Monge-gauge action by substitution using (11)
and (23):

L → L½φ� ≔ −
Z

dσ ξþðφ0Þ2 ðξ� ¼ t� σÞ: ð26Þ

The Lorentz boost transformation of any function f of
phase-space fields is given by the formula

δwf ¼ wff; LgPB; ð27Þ

where w is the boost parameter. Prior to gauge fixing, φ is
inert, but after gauge fixing we get the result of [6]:

δwφ ¼ −wξþφ0 ðMonge gaugeÞ: ð28Þ

More generally, the Monge-gauge expression for the
Noether charge (25) is

QðkÞ ¼
Z

dσ kþðξÞðφ0Þ2 ðk� ¼ k0 � k1Þ; ð29Þ

which generates the transformation δkφ ¼ kþφ0. Ignoring
surface terms, it may be verified directly that this induces a
variation of the FJ action that is a surface term if, and only
if, ∂−kþ ¼ 0, as required for a conformal transformation.
Using (3) we have δkΦ ¼ kþ∂þΦ≡ LkΦ, which is the
first-order variation of a 2D scalar field under a conformal
transformation.
Although the simplest set of constraint functions for the

covariant chiral boson action (18) are those of (24), we are
free to choose those of (19) and this freedom allows a
string-theory application. So far we have considered a
chiral reduction on S1 of a 3D string. Consider now the
chiral reduction on T16 of a 26D string; the result is, for
10D Minkowski coordinates fXM;M ¼ 0;…; 9g,

S ¼
Z

dt
Z

dσf _XMPM þ _φ · φ0 − eH⊥ − uHkg; ð30Þ

where φ is a Euclidean 16-vector of FJ scalar fields, and the
constraint functions are

H⊥ ¼ 1

2
½ηMNPMPN þ 2Tjφ0j2 þ T2ηMNðXMÞ0ðXNÞ0�;

Hk ¼ ðXMÞ0PN þ jφ0j2: ð31Þ
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In the conformal gauge, u ¼ 0 and e ¼ 1=T, elimination of
PM yields the quadratic Lagrangian density

L ¼ −2T∂−XM∂þXNηMN þ ð _φ − φ0Þ · φ0: ð32Þ

By adding the 10-vector of antichiral fermions required for
(1,0) supersymmetry, and then the conformal-gauge ghosts,
we arrive at an anomaly-free conformal-gauge action for
the heterotic string in which the center of mass motion is in
the 10D Minkowski spacetime because the 16 FJ chiral
bosons have no zero modes.
We turn now to the higher-dimensional chiral general-

izations of the FJ theory. We start from a (4kþ 2)-
dimensional Minkowski spacetime with Minkowski
coordinates ðt; σ ¼ fσi; i ¼ 1;…; 4kþ 1gÞ. We then
introduce a 2k-form potential AðtÞ on the constant-time
hypersurfaces, from which we form the gauge-invariant
antisymmetric tensor density with components

Bi1…i2k ¼ 1

ð2kÞ! ε
i1���i2kjl1���l2k∂jAl1���l2k : ð33Þ

Next, we propose an action of the form

S½A� ¼
Z

dt
Z

dσ

�
1

ð2kÞ!
_Ai1���i2kB

i1���i2k −H
�
; ð34Þ

whereH is some gauge-invariant and rotationally invariant
Hamiltonian density; for a “chiral” electrodynamics we
expect it to be a function of B only. Consider the choice

H ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
T2 þ 2TjBj2 þ jB × Bj2

q
− T; ð35Þ

where T is a constant [with dimensions of (4kþ 1)-brane
tension]. We use the notation

ðB × BÞi ≔
1

½ð2kÞ!�2 εij1���j2kl1���l2kB
j1���j2kBl1���l2k ; ð36Þ

and j · j indicates the Euclidean norm:

jBj2 ¼ 1

ð2kÞ! δiij1 � � � δi2kj2kB
i1���i2kBj1���j2k ;

jB × Bj ¼ δijðB × BÞiðB × BÞj: ð37Þ

The k ¼ 0 case of (34) is the FJ action, irrespective of the
value of T. To see this write A ¼ φ for the 0-form potential,
so that B ¼ φ0; then H ¼ ðφ0Þ2.
For k ≥ 1 the Hamiltonian density (35) is T dependent.

In the T → ∞ limit it is quadratic in B and the action is the
Henneaux-Teitelboim action for free chiral 2k-form electro-
dynamics [2]. For finite T there are interactions but these
simplify in the T → 0 limit:

HjT¼0 ¼ jB × Bj: ð38Þ

This is homogeneous of degree 2 in B but not quadratic, so
it defines a (conformally invariant) interacting theory. The
k ¼ 1 case was found by Gibbons and West [7] from the
M5-brane phase-space action of [11] by a limit analogous
to that introduced by Bialynicki-Birula in the context of
Born-Infeld electrodynamics [12]. It was recently redis-
covered by the author [8], and interpreted as an infrared
limit of the chiral 2-form electrodynamics on a static planar
M5-brane in the AdS7 × S4 vacuum of M-theory; this was
inspired by a similar interpretation of Bialynicki-Birula’s
nonlinear conformal electrodynamics as an infrared limit
of the Born-Infeld electrodynamics on a D3-brane in
AdS5 × S5 [13].
As we have seen here for k ¼ 0, and as shown for k ¼ 1

in [8], the action (34) is Lorentz invariant for the
Hamiltonian density of (35) because it is the gauge-fixed
version of a reparametrization invariant action that is
manifestly Lorentz invariant. We now investigate whether
this remains true for k > 1. The first step is to consider an
action of the form

S ¼
Z

dt
Z

dσ

�
_XμPμ −

1

ð2kÞ!
_Ai1���i2kB

i1���i2k

− eH⊥ − uiHi

�
; ð39Þ

for μ ¼ 0; 1;…; 4kþ 2, and

H⊥ ¼ 1

2
½P2 þ 2TjB2j þ T2 det h�;

Hi ¼ ∂iXμPμ þ ðB × BÞi; ð40Þ

where h is the induced space metric (hij ¼ ∂iXμ∂jXνημν for
i; j ¼ 1;…; 4kþ 1). Also,

Pμ ¼ Pμ − TCμ; ð41Þ

where, for d ¼ 4kþ 1,

Cμ ¼
1

d!
εμν1…νdε

i1…id∂i1X
ν1 � � � ∂idX

νd : ð42Þ

The replacement Pμ → Pμ serves the same purpose as
before: subtraction of T from the Monge-gauge energy
density, as can be verified using the identities ∂iXμCμ ≡ 0

and C2 ≡ − det h.
The Monge gauge choice ðX0;XÞ ¼ ðt; σÞ takes the

covariant action of (39) to the action of (34) with
Hamiltonian density (35) for any k, but the validity of this
step depends on the first-class property of the constraints
because they will not otherwise generate the required gauge
invariances. Thus, the problem of finding a Hamiltonian
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densityH that ensures a Lorentz invariant action, which has
been addressed by a very different method in [14], is here
transferred to the problem of finding first-class constraint
functions for the covariant action. It is again convenient to
choose a functional basis for them by defining

H⊥½β� ¼
Z

dσ βH⊥; Hk½α� ¼
Z

dσ αiHi; ð43Þ

for vector field α and scalar inverse-density β on the
(4kþ 1) space. The relevant PB relations are

fXμðσÞ; PνðςÞgPB ¼ δμνδðσ − ςÞ;

fAi1…inðσÞ; Bj1…jnðςÞgPB ¼ 1

2n!
δj1½i1 � � � δ

jn
in�δðσ − ςÞ ð44Þ

for n ¼ 2k. The second line generalizes to arbitrary k the
relation fφðσÞ;φ0ðςÞgPB¼ 1

2
δðσ−ςÞ, which follows directly

from the canonical PB relations of (20).
Using these PB relations we may compute the PBs of the

constraint functions (40); for T ¼ 0 one finds that the only
nonzero PB relations are

fHk½α�; H⊥½β�gPB ¼ H⊥½Lαβ�;
fHk½α�; Hk½α̃�gPB ¼ Hk⟦α; α̃⟧; ð45Þ

where Lαβ is the Lie derivative of β with respect to the
vector field α. This is exactly what one finds for the null
(4kþ 1)-brane, so we may impose the Monge gauge to
arrive at the action (34) with Hamiltonian density (38). This
is the promised class of conformal chiral 2k-form electro-
dynamics that includes, as the k ¼ 0 case, the FJ chiral
boson theory.
For k ¼ 1, the action (34) is Lorentz invariant for the

more general T-dependent Hamiltonian density of (35). In
this case one finds that

fH⊥½β�; H⊥½β̃�gPB ¼ Hk½αðβ; β̃Þ�; ð46Þ

where

αiðβ; β̃Þ ¼ ½T2ðdet hÞhij þ 2T½B2�ij�ðβ∂↔jβ̃Þ; ð47Þ

with ½B2�ij ¼ BikBjlhkl. The right-hand side of (46) appa-
rently includes a quartic term in B that cannot appear on the
left-hand side but the identity ½B2�ijðB × BÞj ≡ 0 ensures
that it is absent [8]. This identity fails for k > 1, so the
Hamiltonian density of (35) does not define a Lorentz
invariant theory for k > 1 unless T ¼ 0. There may exist a
modified choice of H that overcomes this restriction, but
the k ¼ 2 example provided by IIB supergravity [15]

suggests that nonconformal interactions for k > 1 must
be gravitational.
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Note added—Conformal n-form electrodynamics in space-
time dimension 2ðnþ 1Þ for any n, generalising the n ¼ 1
case of Bialynicki-Birula [12], has been studied previously
by Chruscinski [16], but without the imposition of a
chirality constraint for even n.
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