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Exceptional field theories yield duality covariant formulations of supergravity. We show that they
provide a highly efficient tool to compute the Kaluza-Klein mass spectra associated with compactifications
around various background geometries relevant for string theory and holographic applications. This
includes geometries with little to no remaining symmetries, hardly accessible to standard methods. As an
illustration, we determine the masses of some higher Kaluza-Klein multiplets around warped geometries
corresponding to some prominent N ¼ 2 supersymmetric anti–de Sitter vacua in maximal supergravity.
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An old and central problem in theories with extra
dimensions is the determination of the mass spectrum of
higher-dimensional fluctuations around a given compacti-
fication background. From a phenomenological point of
view, this is central to the question of which particles are
observable in lower dimensions. In particular, massless
scalar fields in general contradict particle physics observa-
tions, while scalar fields of negative mass squared indicate a
vacuum instability that jeopardizes the entire compactifica-
tion scenario. This is particularly relevant for vacua whose
stability is not controlled by supersymmetry arguments. In
the holographic context, the full Kaluza-Klein spectrum
around particular geometries with anti–de Sitter (AdS)
factors carries vital information about the conformal dimen-
sions of gauge invariant operators in the dual gauge theory.
Computation of Kaluza-Klein mass spectra, in general, is

a highly nontrivial problem, which requires linearization
and diagonalization of the higher-dimensional field equa-
tions expanded in terms of the eigenmodes of suitable
Laplacian operators on the internal manifold. There are
only particular scenarios where this problem has been fully
solved. For manifolds with large isometry group and
preserving major fractions of supersymmetry, fluctuations
organize themselves into (semi)short multiplets of the
superalgebra of background isometries, such that the inter-
nal harmonics are controlled by group theory, and the mass
eigenvalues are essentially determined by the residual
quantum numbers. This has underpinned the early work
on the Kaluza-Klein spectra of the maximally supersym-
metric backgrounds AdS4 × S7 [1–4], and AdS5 × S5 [5,6].

Examples of compactifications with less supersymmetry yet
controlled by the coset structure of the internal spaces
include Refs. [7,8].
For general manifolds, the problem is far more compli-

cated. The mass spectrum of the spin-2 sector shows some
universal pattern and can be determined from a wave
equation depending only on the background geometry
and not on the supergravity matter fields [9]. This has
been further exploited in [10–13]. By contrast, the fluc-
tuation equations for the lower-spin fields, notably the
scalar fluctuations, generically depend on the nonmetric
details of the background solution, such as the nonvanish-
ing background fluxes of p-forms. Moreover, these fluc-
tuations mix together the various matter fields such that
mass eigenstates have to be meticulously disentangled.
This renders the general analysis highly nontrivial.
On supersymmetric backgrounds, the information from

the spin-2 sector may be extrapolated to some of the other
matter fields upon exploiting the multiplet structure of the
fluctuations [12,14,15]. However, this approach offers only
partial access to the Kaluza-Klein spectrum as it remains
restricted within the spin-2 multiplets. Moreover, even for
those mass eigenstates sitting inside spin-2 multiplets, the
laborious task of identifying the corresponding fluctuations
within the higher-dimensional theory remains. This is
indispensable for any holographic application.
In this Letter, we will show that exceptional field theory

[16] offers a very powerful tool to solve this problem for
large classes of examples. Exceptional field theories yield a
duality covariant formulation of higher-dimensional super-
gravity theories. They have proven instrumental in con-
structing consistent truncations from higher-dimensional
supergravities [17,18]. In particular, they offer a construc-
tive way to obtain the nonlinear reduction Ansätze of the
higher-dimensional theory in terms of the fields of a lower-
dimensional gauged supergravity, such that all solutions
of the lower-dimensional theory induce solutions of the

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW LETTERS 124, 101601 (2020)

0031-9007=20=124(10)=101601(6) 101601-1 Published by the American Physical Society

https://orcid.org/0000-0003-0196-3610
https://orcid.org/0000-0002-4848-7773
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.101601&domain=pdf&date_stamp=2020-03-10
https://doi.org/10.1103/PhysRevLett.124.101601
https://doi.org/10.1103/PhysRevLett.124.101601
https://doi.org/10.1103/PhysRevLett.124.101601
https://doi.org/10.1103/PhysRevLett.124.101601
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


higher-dimensional field equations. In this Letter, we
will demonstrate that this construction may be naturally
extended to also produce the form of the higher-
dimensional fluctuations around any solution uplifted
from the lower-dimensional theory. In particular, we find
that the formalism automatically disentangles the higher-
dimensional fluctuation equations, which allows us to
obtain compact and universal formulas for the mass
matrices of the infinite Kaluza-Klein towers. We briefly
illustrate the formalism for a couple of prominent N ¼ 2
supersymmetric AdS vacua in maximal supergravity.
Details will appear in an upcoming paper [19].
As an example, we discuss the domain solution ofD ¼ 5

gauged supergravity that uplifts to a solution of type IIB
supergravity interpolating between the maximally super-
symmetric AdS5 × S5 and a warped AdS5 ×M5 geometry
[20]. The latter background is the conjectured holographic
dual of the infrared (IR) fixed point of the renormalization
group (RG) flow triggered by a mass deformation of
N ¼ 4 super-Yang-Mills theory. The internal manifold
M5 is a deformation of the round sphere S5, preserving
only U(2) isometries and breaking supersymmetry down to
one quarter. Moreover, all p-forms in ten dimensions
acquire nonvanishing background fluxes. Accordingly, this
background is not amenable to standard techniques of
harmonic analysis. We show that, within exceptional field
theory, the full Kaluza-Klein spectrum around this back-
ground can be computed with the mass eigenstates neatly
expressed in terms of the harmonics of the round S5, and we
give the explicit results for the first level. The same pattern
applies to many other holographic backgrounds, including
[12,15,21–26] (to name a few) and will allow us to extract
their hitherto unknown Kaluza-Klein spectra.
Let us start by briefly reviewing the structure of the

relevant E6ð6Þ exceptional field theory (ExFT); for details,
we refer to [16,27]. This ExFT is a universal formulation of
all higher-dimensional supergravities in terms of the fields
of D ¼ 5 maximal supergravity. Its bosonic sector

fgμν;MMN;Aμ
M;BμνMg; μ ¼ 0;…; 4;

M ¼ 1;…; 27 ð1Þ
comprises an external and an internal metric gμν, MMN ,
respectively, with the latter parametrizing the coset space
E6ð6Þ=USpð8Þ, together with vector and tensor fields Aμ

M

and BμνM, transforming in the 27 and 270 of the group
E6ð6Þ, respectively. All fields formally live on a (5þ 27)-
dimensional exceptional space-time with coordinates
fxμ; YMg, subject to the section constraint

dMNK∂N ⊗ ∂K ¼ 0; ð2Þ
with the symmetric E6ð6Þ invariant d symbol dMNK .
The ExFT Lagrangian resembles the generic structure of
maximal supergravity in five dimensions,

L≡ R̂þ 1

24
gμνDμMMNDνMMN

−
1

4
MMNF μνMF μν

N þ jgj−1=2Ltop − VðM; gÞ: ð3Þ

Here, derivatives are covariantized Dμ ¼ ∂μ − LAμ
with

respect to generalized diffeomorphisms acting as

LΛMMN ¼ ΛK∂KMMN þ 12∂KΛLPK
L
P
ðMMNÞP; ð4Þ

with the projector onto the adjoint representation

PM
N
K
L ¼ 1

18
δMN δ

K
L þ 1

6
δKNδ

M
L −

5

3
dNLRdMKR: ð5Þ

The non-Abelian field strengths read

F μν
M ≡ 2∂ ½μAν�M − ½Aμ;Aν�ME þ 10dMNK∂KBμνN; ð6Þ

with the non-Abelian E bracket ½; �E derived from the action
(4) and the coupling to 2-forms BμνM required in order to
achieve gauge covariance. The topological term in (3) is
obtained by integrating

dLtop ∝ dMNKFM ∧ FN ∧ FK

− 40dMNKHM ∧ ∂NHK; ð7Þ

withHM denoting the non-Abelian 3-form field strength of
the tensor fields BM. Finally, the potential VðM; gÞ is a
gauge invariant combination of terms bilinear in internal
derivatives acting on internal and external metric.
The section constraint (2) implies that fields depend

on no more than six of the internal coordinates. Upon
inequivalent choices of the physical internal coordinates
among the fYMg, the Lagrangian (3) reproduces that
of the full D ¼ 11 and ten-dimensional IIB supergravity,
respectively. Specifically, the IIB coordinates are identified
upon breaking E6ð6Þ down to GLð5Þ × SLð2Þ with

fYMg → fYm; Ykmn; Ym
α; Yαg;

m ¼ 1;…; 5; α ¼ 1; 2; ð8Þ

and restricting all field dependence to fxμ; Ymg. Upon
analogous decomposition of the ExFT fields (1) under
GLð5Þ × SLð2Þ, followed by proper on-shell dualiza-
tions and field redefinitions, one can establish the precise
dictionary to recover the full field content of the ten-
dimensional IIB theory [27].
ExFT has proven a powerful tool for the construction

of consistent truncations. The reduction formulas for the
ExFT fields (1) take the form of a generalized Scherk-
Schwarz Ansatz
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gμνðx; YÞ ¼ ρ−2ðYÞgμνðxÞ;
MMNðx; YÞ ¼ UM

KðYÞUN
LðYÞMKLðxÞ;

Aμ
Mðx; YÞ ¼ ρ−1ðYÞðU−1ÞNMðYÞAμ

NðxÞ;
BμνMðx; YÞ ¼ ρ−2ðYÞUM

NðYÞBμνNðxÞ; ð9Þ

in terms of an E6ð6Þ twist matrix U and a weight factor ρ.
The consistency conditions for the twist matrix are most
compactly expressed as conditions of generalized Leibniz
parallelizability [28]

LUM
UN ¼ XMN

KUK; for UM ≡ ρ−1U−1
M ; ð10Þ

with constant embedding tensor XMN
K. Once the twist

matrix satisfies the consistency conditions (10), all depend-
ence on the internal coordinates factors out from the IIB
equations of motion, which then reduce to the equations
of motion of maximal D ¼ 5 supergravity with gauging
defined by the embedding tensor (10).
The S5 reduction of IIB supergravity is described by a

particular twist matrix living in SLð6Þ ⊂ E6ð6Þ, induced by
the 6 × 6 matrix

ðU−1ÞAm̂ ¼ fðU−1ÞA0; ðU−1ÞAmg
¼ ω

∘ 1=3fω∘ −1YA; g
∘mn∂nYA þ 4ζ

∘m
YAg; ð11Þ

in terms of elementary sphere harmonics YAYA ¼ 1

(A ¼ 1;…; 6), the round S5 metric g
∘
mn ¼ ∂mYA∂nYA,

and the vector field ζ
∘n

defined by ∇∘ nζ
∘n ¼ 1. The weight

factor is given by ρ ¼ ω
∘ −1=3 in terms of the metric

determinant ω
∘ 2 ¼ det g

∘
mn. With the embedding of

SLð6Þ × SLð2Þ ⊂ E6ð6Þ described by the breaking of
the 27 as

AM → fAAB; AAαg ¼ fA½AB�; AAαg; ð12Þ
the induced E6ð6Þ twist matrix ðUðS5ÞÞMM satisfies (10) with
the nonzero components of the embedding tensor given by

XMN
K∶

�XAB;CD
EF ¼ 2

ffiffiffi
2

p
δ½A½EδB�½CδD�F�;

XAB
Cα

Dβ ¼ −
ffiffiffi
2

p
δ½ACδB�Dδαβ:

ð13Þ

In particular, the twist matrix satisfies the relation

UM
N∂N ¼ KM

m∂m; ð14Þ

with the SO(6) Killing vector fields

KAB
m ¼

ffiffiffi
2

p
g
∘mnY½A∂nYB�; KAαm ¼ 0: ð15Þ

Within the reduction Ansatz (9), the AdS5 × S5 solution of
IIB supergravity takes the simple form

gμνðxÞ ¼ ðgAdS5ÞμνðxÞ; MMNðxÞ ¼ δMN; ð16Þ

with vectors and tensors vanishing. Fluctuations of the IIB
theory around this background solution organize into an
infinite tower of short Kaluza-Klein multiplets of increas-
ing masses [5,6]. The Ansatz (9) describes the full nonlinear
embedding into ten dimensions of the lowest (massless)
Kaluza-Klein multiplet that carries the field content of
D ¼ 5 maximal gauged supergravity [29], such that every
solution of the D ¼ 5 theory lifts to a solution of the IIB
field equations [30].
In this Letter, we address the higher Kaluza-Klein

multiplets. In the standard formulation of IIB supergravity,
fluctuations are formulated in terms of appropriate sphere
harmonics. For example, a ten-dimensional scalar field
gives rise to a tower of D ¼ 5 scalar fields

ϕðx; YÞ ¼
X
Σ
YΣφΣðxÞ; ð17Þ

accompanying the scalar harmonics YΣ on the round S5,
i.e., the sphere functions on which the Killing vector fields
(15) have a linear action

KM
m∂mYΣ ¼ −T M

ΣΩYΩ; ð18Þ

with SO(6) generators T M. Specifically, for S5 these
harmonics can be expressed as polynomials in the elemen-
tary harmonics YA as

fYΣg ¼ f1;YA;YA1A2 ;…;YA1…An;…g; ð19Þ

where we denote by YA1…An ≡ YððA1…YAnÞÞ traceless
symmetrization. The index Σ thus runs over the tower of
symmetric vector representations ½n; 0; 0� of SO(6). For the
fields of nonvanishing spin, the relevant harmonics on coset
spaces such as S5 ¼ SOð6Þ=SOð5Þ can be classified and
determined by group theoretical methods [31].
The main result that we will exploit in this Letter is the

observation that, in terms of the ExFT variables (1),
fluctuations around the background (16) are most com-
pactly expressed by combining the nonlinear embedding of
the lowest multiplet (9) with the infinite tower of scalar
harmonics YΣ. More precisely, for vector and tensor fields,
the full set of IIB fluctuations is described by the gener-
alization of (9) to

Aμ
M ¼ ρ−1ðU−1ÞNM

X
Σ
YΣAμ

N;ΣðxÞ;

BμνM ¼ ρ−2UM
N
X
Σ
YΣBμνN;ΣðxÞ; ð20Þ

with the sum running over scalar harmonics (19). For the
external and the internal metric, the Ansatz
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gμν ¼ ρ−2
�
ðgAdS5ÞμνðxÞ þ

X
Σ
YΣhμν;ΣðxÞ

�
;

MMN ¼ UM
KUN

L

�
δKL þ

X
Σ
YΣjKL;ΣðxÞ

�
; ð21Þ

is given in terms of fluctuations, further restricted by
the fact that these metrics parametrize the coset spaces
GLð5Þ=SOð5Þ and E6ð6Þ=USpð8Þ, respectively.
The conditions (10) satisfied by the twist matrices ensure

that, with this Ansatz to linear order in the fluctuations, all
dependence on the internal coordinates still factors out
from the equations of motion. The latter thus reduce to
linear five-dimensional differential equations. In particular,
in the IIB field equations, internal derivatives act through-
out via the combination of (10) and (14); i.e., their action on
the sphere harmonics is realized by the action (18) of
Killing vector fields. Consequently, the resulting equations
do not mix fluctuations over different SO(6) representations
Σ. The same structure underlies the ExFT supersymmetry
transformations [32]. As a result, all fluctuations in (20)
and (21) associated with a fixed SO(6) representation
Σ ¼ ½n; 0; 0� combine into a single 1=2-BPS multiplet
BPS[n]. This is to be contrasted with the structure in the
original IIB variables: after evaluating the products of the
sphere harmonics YΣ with the Y-dependent twist matrices
in (20) and (21) and translating the ExFT fields back into
the IIB supergravity fields, fluctuations of the original IIB
fields combine linear combinations of different mass
eigenstates originating from different BPS multiplets.
We now compute the mass matrices by plugging the

Ansatz (20) and (21) into the equations of motion. For the
tensor fields, the Lagrangian (3) gives rise to the first-order
duality equations

dPML∂LðMMNF μνN þ κϵμνρστHρστMÞ ¼ 0; ð22Þ

with κ2 ≡ 5
32
. With the field strengths (6) carrying a

Stückelberg-type coupling to the 2-forms, linearization
and gauge fixing of (22), together with an evaluation of
internal derivatives on twist matrices and scalar harmonics,
gives rise to fluctuation equations for topologically massive
2-forms

3∂ ½μBνρ�Mα ¼
1

2
εμνρστMMΣ;NΩBστ

Nα; ð23Þ

with the antisymmetric mass matrix given by

MMΣ;NΩ ∝ 2dMKLXKL
NδΣΩ − 10dMNKT K

ΣΩ: ð24Þ

It exhibits a very intriguing form as a superposition of the
mass matrix of the D ¼ 5 supergravity describing the
lowest Kaluza-Klein multiplet with the SO(6) action (18)
on the scalar harmonics.

A similar, although more lengthy computation, linear-
izing the second-order vector field equations descending
from (3) yields the vector mass operator

MMΣ;NΩ ∝
1

3
Xs
ML

KXs
NK

LδΣΩ

þ 2ðXs
MK

N − Xs
NM

KÞT K;ΩΣ

− 6ðPK
M
L
N
þ PM

K
L
N
ÞT L;ΩΛT K;ΛΣ

þ 8

3
T N;ΩΛT M;ΛΣ; ð25Þ

in terms of the symmetrized Xs
MN

K ≡ XMN
K þ XMK

N and
the adjoint projector (5). Again, this formula combines the
mass matrix of the D ¼ 5 supergravity with the SO(6)
action (18). Finally, a similar formula can be derived for
the scalar fluctuations (21). For the spin-2 fluctuations,
the Ansatz (21) yields the simple mass formula MΣ;Ω ∝
T M;ΣΛT M;ΛΩ, coinciding with [9,13].
In order to diagonalize the mass matrices level by level in

the harmonics (19), we need to evaluate the formulas (24)
and (25) with the explicit form of the embedding tensor
(13), as well as the explicit expressions for the E6ð6Þ tensor
dKMN and the SO(6) action (18) in the basis (12)

dAB;CD;EF ¼ 1ffiffiffiffiffi
80

p εABCDEF; dABCα;Dβ ¼
1ffiffiffi
5

p δABCDεαβ;

ðT ABÞCD ¼
ffiffiffi
2

p
δC½AδB�D: ð26Þ

It is then a straightforward exercise to determine the
mass eigenvalues of the different SO(6) representations
at level Σ ¼ ½n; 0; 0�, i.e., of the different irreducible
representations of AAB;C1…Cn , AAα

C1…Cn , etc. We summa-
rize the result in Table I, which agrees with [5,6]. Moreover,
it confirms that the propagating fluctuations described
by the Ansatz (20) and (21) at level Σ ¼ ½n; 0; 0� precisely
span the bosonic part of a single 1=2-BPS multiplet.
Moreover, the Ansatz together with the dictionary of
ExFT into IIB supergravity allows us to directly localize
the different components of the BPS multiplets within the
IIB theory.
While this allows for a very compact rederivation of the

known results for S5, the construction has vastly more far-
reaching applications. Since the reduction Ansatz is exact to

TABLE I. Mass spectrum (24) and (25) on round S5 at level n.

Fluctuation SO(6) m2

Aμ
AððB;C1C2…CnÞÞ ½n; 1; 1� nðnþ 2Þ

Aμ
B½C1;C2�C3…CnB [n − 2, 1, 1] ðnþ 2Þðnþ 4Þ

Aμ
α½A;C1�C2…Cn [n − 1, 1, 1] ðnþ 1Þðnþ 3Þ

Bμν
αððA;C1…CnÞÞ [nþ 1, 0, 0] ðnþ 1Þ2

Bμν
αB;BC2…Cn [n − 1, 0, 0] ðnþ 3Þ2

Bμν
½AB;C1�C2…Cn ½n − 1; 0; 2� þ c:c: ðnþ 2Þ2
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all orders in the lowest multiplet, we may export the
formulas to derive the Kaluza-Klein spectrum around
any solution of the D ¼ 5 supergravity.
As an example, we consider the N ¼ 2 supersymmetric

stationary point in theD ¼ 5 scalar potential conjectured to
be dual to the IR fixed point of the RG flow triggered by a
mass deformation of maximal super-Yang-Mills theory
[20]. It is represented by a twist matrix

UM
M ¼ VM

NðUS5ÞNM; ð27Þ

where the constant E6ð6Þ matrix VM
N identifies the location

of the stationary point on the coset manifold E6ð6Þ=SUð8Þ.
Accordingly, the fluctuation Ansatz (20) and (21) holds
with the new twist matrix (27), and the mass formulas (24)
and (25) hold with embedding tensor XMN

K and SO(6)
generator T M dressed by the matrix VM

N . Without going
into details, we give the resulting mass spectrum around
this vacuum at level 1 organized into multiplets of SUð2Þ ×
SUð2; 2j1Þ (in the notation of [20])

0∶ D

�
1þ 1

2

ffiffiffiffiffi
37

p
; 0; 0; 1

�
C
þD

�
1þ 1

2

ffiffiffiffiffi
61

p
; 0; 0; 1

�
C

þDS

�
9

2
;
1

2
;
1

2
; 1

�
C
þ 2DS

�
9

2
;
1

2
; 0;−1

�
C

þD

�
9

2
;
1

2
; 0; 1

�
C
;

1
2
∶ D

�
1þ 1

4

ffiffiffiffiffiffiffiffi
145

p
;
1

2
;
1

2
;
1

2

�
C
þD

�
1þ 1

4

ffiffiffiffiffiffiffiffi
193

p
; 0; 0;

1

2

�
C

þD

�
15

4
;
1

2
; 0;

1

2

�
C
þD

�
17

4
;
1

2
; 0;−

1

2

�
C

þDS

�
15

4
; 0; 0;

5

2

�
C
þDS

�
17

4
; 0; 0;

3

2

�
C
;

1∶ 2Dð1þ
ffiffiffi
7

p
; 0; 0; 0Þ þD

�
1þ

ffiffiffi
7

p
;
1

2
; 0; 0

�
C

þDS

�
7

2
;
1

2
; 0; 1

�
C
þDS

�
3;
1

2
; 0; 2

�
C
;

3
2
∶ DS

�
9

4
; 0; 0;

3

2

�
C
; ð28Þ

it is a nontrivial consistency check that the masses obtained
by our formulas consistently combine into SUð2; 2j1Þ
multiplets. By DS we denote semishort multiplets whose
energy saturates one of the unitarity bounds [33]. In
contrast, the energy of the long multiplets cannot be
deduced from representational arguments, but only from
direct computation as presented here. Complex multiplets
DðE0; j1; j2; rÞC come in pairs with their conjugates
DðE0; j2; j1;−rÞC. It is interesting to note that the complex
multiplet DSð72 ; 12 ; 0; 1ÞC contains two massless scalars.

As a second example, we study the U(3) invariantN ¼ 2
AdS4 vacuum identified in the scalar potential of maximal
D ¼ 4 gauged supergravity [34,35], conjectured to be
the holographic dual of certain matter-coupled Chern-
Simons theories. The general multiplet structure of the
Kaluza-Klein spectrum has been analyzed in [14] by group
theoretical methods, which however do not give access to the
masses of the long multiplets. Adapting the above mass
formula (25) to E7ð7Þ ExFT [36] allows us to straightfor-
wardly determine the full spectrum. We list our result for the
energies of the long OSpð2j4Þ × SUð3Þmultiplets appearing
at the first level (in the notation of [14])

LVEC∶ ½0; 0�∶ E0 ¼
1

2
þ 1

2

ffiffiffiffiffi
33

p
;

LGRAV∶ ½1; 0� þ ½0; 1�∶ E0 ¼
1

2
þ 1

6

ffiffiffiffiffiffiffiffi
145

p
;

LGINO∶ ½1; 0� þ ½0; 1�∶ E0 ¼
17

6
;

LVEC∶ ½1; 0� þ ½0; 1�∶ E0 ¼
1

2
þ 1

6

ffiffiffiffiffiffiffiffi
217

p
;

LVEC∶ ½2; 0� þ ½0; 2�∶ E0 ¼
7

3
;

LGINO∶ ½1; 1�∶ E0 ¼
1

2
þ

ffiffiffi
3

p
: ð29Þ

This extends the result of [15] for the long graviton multiplet
(LGRAV) to all the long multiplets (the long vector, LVEC,
and long gravitino, LGINO, multiplets) at this level. In
particular, the energy values we find establish that there is no
multiplet shortening occurring for these multiplets.
Our mass formulas (24) and (25) thus offer direct access

to the full Kaluza-Klein spectra around these squashed and
stretched spheres, hardly accessible to standard methods.
As another intriguing application, the Ansatz (20) and (21),
being exact in the lowest Kaluza-Klein multiplet, will
allow us to compute within ExFT the holographic 2-point
correlation functions of arbitrary operators throughout the
renormalization group flows [20,37–39] described as
domain wall solutions of lower-dimensional supergravities.
Further applications include similar analyses for the AdS

vacua identified and studied in [12,15,21–26]. More gen-
erally, it will be interesting to combine the presented
technology with recent numerical advances in searching
for such vacua [40]. Of special interest are the nonsuper-
symmetric AdS vacua whose stability so far could only
have been addressed within the lowest Kaluza-Klein
multiplet. The technology presented here gives direct
access to their notoriously difficult stability analysis.
This is particularly interesting in light of recent conjectures
by Ooguri and Vafa on the absence of such vacua [41].
Another interesting direction is the generalization of this
framework to vacua within consistent truncations preserv-
ing smaller fractions of supersymmetry [18], giving access
to yet larger classes of relevant AdS vacua.
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