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It is now experimentally possible to entangle thousands of qubits, and efficiently measure each qubit in
parallel in a distinct basis. To fully characterize an unknown entangled state of n qubits, one requires an
exponential number of measurements in n, which is experimentally unfeasible even for modest system
sizes. By leveraging (i) that single-qubit measurements can be made in parallel, and (ii) the theory of perfect
hash families, we show that all k-qubit reduced density matrices of an n qubit state can be determined with
at most eOðkÞ log2ðnÞ rounds of parallel measurements. We provide concrete measurement protocols which
realize this bound. As an example, we argue that with near-term experiments, every two-point correlator in
a system of 1024 qubits could be measured and completely characterized in a few days. This corresponds to
determining nearly 4.5 million correlators.
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Introduction.—Recently there have been remarkable
advances in the construction and control of intermediate-
scale quantum systems containing several hundred or even
thousands of entangled qubits [1–5]. The qubits come from
a variety of systems, including interacting electronic spins,
quantized fluxes, and spatial modes of photons. But what
about measuring the state of such systems, and docu-
menting their correlations and entanglement?
To characterize an unknown n-qubit state completely

using quantum tomography requires a number of parallel
measurements which grows exponentially with n [6,7].
That exponential growth renders quantum tomography for
many-body systems completely impractical even for
modest system sizes. Indeed, full quantum tomography
has not been performed for more than 10 qubits [8]. Some
limited classes of quantum states featuring a priori con-
strained patterns of entanglement allow tomography with
parametrically fewer measurements (for instance, see
Refs. [9,10]), but most experimental systems do not
produce states of those kinds. There are ingenious protocols
which can characterize expectation values of an unknown
quantum state more efficiently [11], but they require
entangled nondemolition measurements and are not exper-
imentally realistic for appreciably sized systems. Thus,
there is a significant gap between our ability to produce
massively correlated states in controlled settings, and our
ability to characterize those correlations quantitatively.
What can be done is to address the individual qubits of a

system in parallel, and to measure each in a chosen basis of
C2. Suppose we want to measure all k-qubit reduced

density matrices of an n-qubit system. Access to these
density matrices would enable us to completely character-
ize all k-qubit correlations present in the n-qubit system.
There are ðnkÞ such k-qubit reduced density matrices, and if
k is small relative to n then ðnkÞ ∼ nk. Performing a k-qubit
tomography requires eOðkÞ measurements, and so naïvely
we require eOðkÞðnkÞ ∼ eOðkÞnk measurements to obtain all k-
qubit reduced density matrices. Even for k ¼ 2, it would
not be practical to make so many measurements once n
exceeds a hundred qubits.
This count, however, ignores the power of parallelism. If

we measure nonoverlapping k-qubit subsystems in parallel
we can get by with fewer measurements, but that only
reduces the total number of required measurements by a
multiplicative factor of n=k. At first sight, it appears
problematic that the set of all k-qubit subsystems is highly
overlapping. In fact, it is a tremendous advantage.
Measuring a particular k-qubit subsystem provides us
information about all other k-qubit subsystems which
overlap with it. Here we present a method to organize that
information. We call it “quantum overlapping tomography”
(QOT). Using QOT, we can measure all k-qubit reduced
density matrices with at most eOðkÞ log2ðnÞ measurements.
Our QOT protocols only require measuring each qubit in a
distinct basis (i.e., a product measurement) in parallel, with
judiciously chosen measurement settings. The measure-
ments can be efficiently postprocessed to reconstruct all
k-qubit reduced density matrices. QOT easily adapts to
qudits (i.e., d-level systems) in place of qubits. ðn; kÞ
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families of perfect hash functions [12–14] will be a crucial
tool in our measurement procedure. The theory of perfect
hash families has been well studied in theoretical computer
science for over thirty years, and is used in database
management [12–25].
We will begin by reviewing quantum tomography, and

then provide a probabilistic argument for the scaling of our
measurement procedure. We then explain the measurement
procedure in explicit mathematical detail for k ¼ 2, and
more briefly for k > 2. Then we describe its possible
realization to measure all 2-qubit correlators in a system
of ultracold atoms, and conclude with a summary and
forward-looking discussion.
Review of quantum tomography.—Here we review the

basic essentials of quantum tomography (see, for instance,
Ref. [26]). We focus on the standard experimental protocol
which only requires product measurements, i.e., measuring
each qubit independently, since more sophisticated
schemes involving entangled measurements are not pres-
ently experimentally feasible. It will be useful to be very
concrete about the measurement procedure. To begin, we
will explicitly explain how to do quantum tomography for a
2-qubit density matrix.
Suppose we have a 2-qubit density matrix ρ, and that we

want to perform a quantum tomography of it. To do so, we
must be able to produce many copies of ρ, via some state
preparation procedure, quantum source, etc. Let σαi denote a
Pauli operator on the ith site, where here i ¼ 1, 2 in the 2-
qubit case. We have α ¼ 0, 1, 2, 3 where σ0 ¼ 1, σ1 ¼ σx,
σ2 ¼ σy, and σ3 ¼ σz, as is standard. We can write ρ as

ρ ¼ 1

4

X3
α;β¼0

trfðσα1 ⊗ σβ2Þρgσα1 ⊗ σβ2; ð1Þ

and so to perform a quantum tomography we need to
measure the expectation values trfðσα1 ⊗ σβ2Þρg, of which
there are 4 × 4 ¼ 16. We do not need to measure the α ¼
β ¼ 0 expectation value, since it is guaranteed to be
trfð1 ⊗ 1Þρg ¼ 1 since ρ has unit trace. Thus, we only
need to measure 15 expectation values.
First we consider the 1-site expectation values, for which

either α ¼ 0, or β ¼ 0. For example, suppose we want to
measure trfðσ01 ⊗ σ22Þρg where we recall that σ01 ¼ 1. Then
we only need to measure the second qubit in the y basis,
and find that

trfðσ01 ⊗ σ22Þρg ≈
1

M
½N 2ð↑yÞ −N 2ð↓yÞ�; ð2Þ

where N 2ð↑yÞ is the number of times we measure the
second qubit to be up in the y basis, andN 2ð↓yÞ is defined
similarly. The other 1-site expectation values can be
obtained in similar fashion.

Now we turn to 2-site expectation values for which
neither α nor β equal zero. As an example, considering the
expectation value trfðσ11 ⊗ σ22Þρg, we need to measure the
first qubit in the x basis, and concurrently the second qubit
in the y basis. Let N 12ð↑x;↑yÞ be the number of times we
measure both the first qubit to be up in the x basis, and the
second qubit to be up in the y basis. The quantities
N 12ð↑x;↓yÞ, N 12ð↓x;↑yÞ, and N 12ð↓x;↓yÞ are defined
similarly. If we make a total number of measurements M,
then we can approximate

trfðσ11 ⊗ σ22Þρg ≈
1

M
½N 12ð↑x;↑yÞ −N 12ð↑x;↓yÞ

−N 12ð↓x;↑yÞ þN 12ð↓x;↓yÞ� ð3Þ

which becomes exact in the limit of a large number of
measurements M. All other 2-site expectation values, for
which neither α nor β equal zero, can be obtained in an
analogous manner.
Suppose we require M measurements of each expect-

ation value to obtain ample statistics. If we want to do a
tomography of ρ, which requires measuring 15 expectation
values withM measurements each, then naïvely we require
15M measurements to determine ρ. However, note that
when we measure 2-site expectation values for which α and
β are both nonzero, we can use this data to extract 1-site
expectation values. For instance, upon collecting data to
construct trfðσ11 ⊗ σ22Þρg, we can use that same data to
construct both trfðσ11 ⊗ 1Þρg and trfð1 ⊗ σ22Þρg. Thus,
instead of measuring all 15 expectation values to determine
ρ, we effectively only need to measure 9 expectation values
(i.e., the 2-site expectation values where neither α nor β is
zero), since we can reuse their measurements to reconstruct
the other 6 expectation values. In summary, we only require
9M measurements to fully determine ρ.
Now, suppose we have a k-qubit density matrix ρ0.

Writing ρ0 as

ρ0 ¼ 1

2k

X3
i1;…;ik¼0

trfðσi11 ⊗ � � �⊗ σikk Þρ0gσi11 ⊗ � � �⊗ σikk ; ð4Þ

we evidently need to determine 4k − 1 expectation values,
where we have subtracted 1 since we already know
trfð1 ⊗ � � � ⊗ 1Þρ0g ¼ 1. Since we obtain each expectation
value by multiplying the outputs of k 2-outcome measure-
ments, we need the probability that each measurement is
faulty to be sufficiently small. In particular, if the proba-
bility of a faulty measurement is Δ, then we want Δ ∼ 1=k
so that kΔ ∼Oð1Þ.
Using a similar procedure as in the 2-qubit case, we only

need to perform M3k total measurements, comprised of all
combinations of x-basis, y-basis, and z-basis measurement
settings for the k sites, each repeatedM times to gain ample
statistics. If we want our approximations to all terms

PHYSICAL REVIEW LETTERS 124, 100401 (2020)

100401-2



trfðσi11 ⊗ � � � ⊗ σikk Þρ0g to be within ε of their true values
with constant probability close to 1, then by the Chernoff-
Hoeffding inequality and a union bound, we require M to
be at most ∼4 logð2Þk=ε2. We will review the Chernoff-
Hoeffding inequality in Appendix A of Supplemental
Material [27]. If we want our reconstructed density matrix
to be ε-close to the true density matrix in the 1-norm, then
would can require M to be at most ∼4 logð2Þk8k=ε2 due to
the norm inequalities kAk1 ≤ d1=2kAk2 ≤ d3=2maxi;j jAi;jj
for d × d matrices. (If we want to guarantee that our
approximation to the true density matrix is itself positive
definite, Hermitian, and has unit trace, then we can use a
protocol such as Ref. [30], although this will not change our
bounds very much.) Using either definition of closeness,
we require a total of eOðkÞ measurements to perform a
quantum tomography on k qubits.
Probabilistic argument.—In the last section, we saw that

to perform a quantum tomography on k qubits, we needed
to perform measurements for all combinations of the
measurement settings (either the x basis, y basis, or z basis
for each qubit), i.e., varying the measurement basis of each
qubit independently. Since there are three bases for each
qubit and k total qubits, we required 3k measurements,
times a multiplicative factor of M to build up enough
statistics.
Now we turn to constructing all ðnkÞ of the k-qubit

reduced density matrices of the n-qubit system. To for-
malize the problem, suppose we have a family of N
functions f1;…; fN , each taking ½n� → ½k�, where ½n� ≔
f1;…; ng and [k] is defined similarly. These functions form
an ðn; kÞ family of perfect hash functions if for any subset S
of [n] where jSj ¼ k (i.e., S contains k elements), there is
some fi in the family which is injective on S [12–14]. For
us, this means that for any given subsystem of k qubits,
there is at least one function fi in the family which assigns
each qubit in that subsystem to a distinct number 1
through k.
Given such a family of functions f1;…; fN , the approach

of QOT is to use each fi to partition the qubits into k
disjoint subsets [i.e., f−1i ðjÞ for j ¼ 1;…; k], and for each
of the N partitions perform all parallel measurements over
single-qubit measurement bases (x, y, or z) such that all
qubits in the same subset of the partition have identical
measurement settings. (Note that there are 3k such parallel
measurements for each partition.) These measurements are
all repeated M times each. This entails making a total of
NM3k total measurements, and allows us to determine all
k-qubit reduced density matrices. This procedure will be
explained in more detail in the following sections. Then a
crucial question is, what is the smallest N for which we can
construct an ðn; kÞ family of perfect hash functions?
To construct a bound on N, we consider a probabilistic

argument in which each fi is chosen randomly, i.e., fi
assigns each qubit to a number 1 through k uniformly at

random. Suppose we want the probability that f1;…; fN
does not form an ðn; kÞ family of perfect hash functions to
be less than a small parameter δ. Then we need N to be at
most (see Appendix B of Supplemental Material [27])

N < eOðkÞ
�
1

k
logð1=δÞ þ logðnÞ

�
: ð5Þ

This implies that we require MeOðkÞ logðnÞ measurements
to determine all k-qubit reduced density matrices of an
n-qubit system using QOT. Using the Chernoff-Hoeffding
inequality and a union bound (see Appendix A of
Supplemental Material [27]), if we want to determine all
terms trfðσi11 ⊗ � � � ⊗ σikk Þρ0g within ε of their true values
with constant probability close to 1, then we require
M ∼ k logðnÞ=ε2. Therefore, the total number of measure-
ments is eOðkÞ log2ðnÞ. As mentioned above, if we wanted
our reconstructed density matrix to be ε-close to the true
density matrix in the 1-norm wewould gain a multiplicative
factor of 8k which would still give us a total of eOðkÞ log2ðnÞ
measurements.
There is a substantial literature which constructs explicit

and efficiently computable ðn; kÞ families of perfect hash
functions which satisfy the bound in Eq. (5), such as
Refs. [12–25]. In the next section, we explain the simplest
example, namely an explicit ðn; 2Þ family of perfect hash
functions of size ⌈ log2ðnÞ⌉, which is well known.
QOT for k ¼ 2.—In this section, we provide a QOT

procedure for measuring all 2-qubit reduced density matri-
ces with only ð3M þ 6M⌈ log2ðnÞ⌉Þ measurements, for
M ∼ 256 logðnÞ=ε2 to achieve ε-closeness to the true
density matrix in the 1-norm. We consider a simple but
very useful example of an ðn; 2Þ family of perfect hash
functions, comprised of q ¼ ⌈ log2ðnÞ⌉ functions f1;…; fq
each taking ½n� → f0; 1g. (In our previous notation, we
would have said that the functions take ½n� → ½2� ¼ f1; 2g,
but here we instead use f0; 1g as the codomain for
convenience.) The function fi is defined by

fiðjÞ ¼ ith digit in the binary expansion ofðj − 1Þ: ð6Þ

Here we are implicitly representing (j − 1) by a q-bit string,
and by the ith digit we mean the ith most significant digit.
For instance, if we consider a (16,2) family so that q ¼ 4,
then f1ð5Þ ¼ 0, f2ð5Þ ¼ 1, f3ð5Þ ¼ 0 and f4ð5Þ ¼ 0. This
follows from the fact that 4 ¼ 5 − 1 can be expressed as the
q-bit string 0100. The functions f1, f2, f3, f4 are depicted
in Fig. 1.
Suppose that we have n qubits, and that we want to

perform quantum tomography on every 2-qubit reduced
density matrix using QOT. We consider an ðn; 2Þ family
of perfect hash functions given by Eq. (6) with q ¼
⌈ log2ðnÞ⌉. The procedure is as follows:
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Step 1: Measure all qubits in the x basis, y basis, and z
basis, eachM times. This corresponds to 3M measurements
of all qubits in parallel.
Step 2: This step will be divided into q substeps,

2.1;…; 2.q. For each j ¼ 1;…; q, step 2.j is as follows.
Consider the function fj. If a qubit is assigned to 0 by fj,
then we call the qubit “red.” Similarly, if a qubit is assigned
to 1 by fj, then we call the qubit “blue.” Then we perform
the following nine measurements, M times each:
(1) measure each red qubit in the x basis, and each blue

qubit in the y basis;
(2) measure each red qubit in the y basis, and each blue

qubit in the x basis;
(3) measure each red qubit in the x basis, and each blue

qubit in the z basis;
(4) measure each red qubit in the z basis, and each blue

qubit in the x basis;
(5) measure each red qubit in the y basis, and each blue

qubit in the z basis;
(6) measure each red qubit in the z basis, and each blue

qubit in the y basis.
Because of parallelization, each step 2.j corresponds to

6M measurements, and thus 6Mq ¼ 6M⌈ log2ðnÞ⌉ mea-
surements total for all of step 2.
Step 3: Steps 1 and 2 collect all of the data we need, and

only require a total of 3M þ 6M⌈ log2ðnÞ⌉ measurements.
Suppose we want to reconstruct the reduced density matrix
ρrs of the rth qubit and the sth qubit, for 1 ≤ r, s ≤ n and of
course r ≠ s. Note that the q-bit binary representation of
(r − 1) and (s − 1) must differ on at least one bit, since r

and s are distinct numbers. Suppose that (r − 1) and (s − 1)
differ on their tth bits. Then
(7) to obtain trfð1r ⊗ σxsÞρrsg, trfð1r ⊗ σysÞρrsg,

trfð1r ⊗ σzsÞρrsg, trfðσxr ⊗ 1sÞρrsg, trfðσyr ⊗ 1sÞρrsg,
trfðσzr ⊗ 1sÞρrsg, we use the data collected from steps 1
and 2;
(8) to obtain trfðσxr ⊗ σxsÞρrsg, trfðσyr ⊗ σysÞρrsg,

trfðσzr ⊗ σzsÞρrsg, we use the data collected from step 1;
(9) to obtain trfðσxr ⊗ σysÞρrsg, trfðσyr ⊗ σxsÞρrsg,

trfðσxr ⊗ σzsÞρrsg, trfðσzr ⊗ σxsÞρrsg, trfðσyr ⊗ σzsÞρrsg,
trfðσzr ⊗ σysÞρrsg, we use the data collected from step 2.t.
Then we can reconstruct ρrs using

ρrs ¼
1

4

X3
α;β¼0

trfðσαr ⊗ σβsÞρrsgσαr ⊗ σβs : ð7Þ

Once we have all of the 2-qubit reduced density matrices at
hand, we can analyze their bipartite entanglement. For
instance, there are explicit formulas for computing the
entanglement of formation [31] and related quantities
[32,33]. One can then study, for example, how entangle-
ment varies as the qubits comprising the 2-qubit subsystem
are chosen to be further apart in space.
QOT for arbitrary k.—To perform QOT to determine all

k-qubit reduced density matrices of an n-qubit system, one
proceeds in the same way as in the previous section, but
instead utilizing an ðn; kÞ family of perfect hash functions.
In the language of the previous section, each function fi in
the family assigns each qubit to one of k “colors,” i.e.,
red, blue, green, etc. The procedure generalizes in the
obvious way. Then the total number of required measure-
ments scales as MeOðkÞ logðnÞ ∼ eOðkÞ log2ðnÞ, which has
an n dependence significantly better than even shadow
tomography applied to measuring subsystems [11]. Such
a shadow tomography would require O(npolylogðnÞ)
measurements.
For k > 2, constructing ðn; kÞ families of perfect hash

functions which contain as few functions as possible can be
a difficult task. Luckily, there is an extensive literature on
constructing such families, and we refer the reader to
Refs. [12–25]. Also, there is a web page providing a list of
the smallest known ðn; kÞ families for various values of n
and k [34].
Experimental prospects.—Here we estimate the practical

potential of QOT based on near-term technology. Consider
an ultracold atom system with spin-1=2 degrees of freedom,
which we can prepare in the ground state of a local
Hamiltonian and then probe with a quantum gas micro-
scope (for a review, see Ref. [35]). In arrays of neutral
atoms configured using optical tweezers [5,36] or in arrays
of optically trapped ions [37], each measurement round
takes at most a few hundred milliseconds. A single cycle of
the experimental protocol can be significantly faster, even
for systems sizes up to hundreds or even thousands of

FIG. 1. A visual depiction of the (16,2) family of perfect hash
functions given by f1, f2, f3, f4 from Eq. (6). The four functions
in the family are displayed in order in (a)–(d), where red
corresponds to 0 and blue corresponds to 1. Note that for any
pair ði; jÞ for 1 ≤ i, j ≤ 16 and i ≠ j, there is at least one function
for which i and j are assigned distinct colors.
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atoms. We will consider on the order of a thousand atoms,
which should be possible in the near future. We also
suppose that there is apparatus to individually rotate each of
the atoms. Concretely, let us choose n ¼ 1024 qubits,
subsystems of size k ¼ 2, and M ¼ 15500, so that around
95% of the time all measured two-point expectation values
are within 0.05 of their true values. (See Appendix A of
Supplemental Material [27] for more details on the esti-
mation of M.) Then the k ¼ 2 QOT protocol in the section
“QOT for k ¼ 2” requires 1 000 000 measurement rounds.
Assuming 250 ms per measurement round, k ¼ 2 QOT
could be performed in a block of three days. By contrast,
the naïve strategy of measuring nonoverlapping 2-qubit
subsystems in parallel with similar error probabilities also
requires around M ¼ 15 500 and thus 9M n

2
=ðn=2Þ ≈ 109

total measurement rounds, which would take nearly
60 weeks nonstop. Thus, QOT would enable the measure-
ment of all 4715008 two-point correlators of a many-body
quantum state. (It would be especially interesting to use 2D
or 3D arrays, since in the higher-dimensional setting it is
easier to trap a large number of atoms, and also more
interesting to characterize low-energy eigenstates of exper-
imentally realizable Hamiltonians.)
Summary and discussion.—QOT provides efficient pro-

tocols to measure many-body correlations in systems with
large numbers of degrees of freedom. We anticipate that
QOTwill be a useful tool for experimental characterization
of many-body quantum states.
Several adaptations of QOT may be interesting to

consider. Systems with symmetry obey constraints and
selection rules which might be exploited to streamline the
protocol. One might also try to focus on local correlations,
in systems where long-range correlations are not signifi-
cant. This poses interesting mathematical problems. For
example, given an n-qubit state on a lattice, how do we
efficiently measure all k-qubit reduced density matrices, for
k-qubit subsystems where every pair of qubits is at most a
distance d apart? Taking geometric constraints into account
would require a generalization of ðn; kÞ families of perfect
hash functions, entailing the additional data of (i) a
weighted graph G representing the geometry, and (ii) a
distance dwhich serves as the maximum diameter of the k-
qubit subsystems.
Since QOT allows us to efficiently measure all k-point

functions of a system, it would be natural to use QOT to
diagnose long-range order and critical behavior. A modi-
fication of the QOT protocols may be useful to focus on
special types of nonlocal order parameters (for instance,
stringlike products) which appear in the classification of
topological order (see, e.g., Refs. [38–40]).
QOT can be applied to measuring expectation values of

k-local Hamiltonians, such as those which appear in
quantum and classical versions of k-SAT [41,42] and in
recent work on quantum machine learning [43–49]. Also,
QOT can supply needed input for the quantum marginal

problem (see Refs. [50,51] for recent overviews, and
Ref. [52] for applications in tomography), in which one
tries to determine a quantum state as well as possible given
its reduced density matrices up to a given size.
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