
 

Widely Tunable Quantum Phase Transition from Moore-Read
to Composite Fermi Liquid in Bilayer Graphene

Zheng Zhu ,1 D. N. Sheng,2 and Inti Sodemann 3

1Department of Physics, Harvard University, Cambridge, Massachusetts 02138, USA
2Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

3Max-Planck Institute for the Physics of Complex Systems, D-01187 Dresden, Germany

(Received 21 September 2019; accepted 11 February 2020; published 5 March 2020)

We develop a proposal to realize a widely tunable and clean quantum phase transition in bilayer graphene
between two paradigmatic fractionalized phases of matter: the Moore-Read fractional quantum Hall state and
the composite Fermi liquid metal. This transition can be realized at total fillings ν ¼ �3þ 1=2 and the
critical point can be controllably accessed by tuning either the interlayer electric bias or the perpendicular
magnetic field values over a wide range of parameters. We study the transition numerically within a model
that contains all leading single particle corrections to the band structure of bilayer graphene and includes
the fluctuations between the n ¼ 0 and n ¼ 1 cyclotron orbitals of its zeroth Landau level to delineate
the most favorable region of parameters to experimentally access this unconventional critical point. We also
find evidence for a new anisotropic gapless phase stabilized near the level crossing of n ¼ 0=1 orbits.
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Introduction.—The advancements in the quality of
graphene and the increased sophistication of techniques
to probe it have positioned it as a rich platform to study the
strongly correlated physics of the quantum Hall regime.
Recent hallmarks of this progress include the observation
of bubble phases in monolayer graphene [1], even denom-
inator fractional quantum Hall states near a pseudo-spin
transition in monolayer graphene [2], fractional Chern
insulators in graphene-hexagonal boron nitride heterostruc-
tures [2], even denominator fractional quantum Hall states
in bilayer graphene [3–5], the observation of exciton
condensation in double bilayer graphene [6,7], and new
sequences of interlayer correlated fractional quantum Hall
states in double-layer graphene [8].
In this Letter, we would like to offer a proposal to reap

yet another fruit of this progress. We will show that bilayer
graphene (BLG) is an ideal platform to realize a particularly
clean quantum phase transition between two remarkable
fractionalized phases of matter: the composite fermi liquid
(CFL) metal [9] and the non-Abelian Moore-Read (MR)
fractional quantum Hall state [10]. Our study builds upon
previous numerical studies [4,11–14] by incorporating our
recently refined understanding of the Hamiltonian of the
nearly eightfold degenerate zero Landau level of BLG [15].
There are two key ingredients that allow us to controllably
tune through this phase transition. One of them, first
recognized in Ref. [11], is that the cyclotron orbital
character of one of the Landau levels can be tuned
continuously from mostly n ¼ 1 character at small
perpendicular magnetic fields into mostly n ¼ 0 at high
perpendicular fields. The second is the ability to enhance
the splitting between n ¼ 0 and n ¼ 1 cyclotron orbits via

the interlayer electric bias [16], whereby reducing the
quantum fluctuations that make the MR state unexpectedly
strong at zero interlayer bias in experiments [4,5] in order to
facilitate its quantum melting into the CFL state. The
expected phase diagram is depicted in Fig. 1.
Theoretically, the MR state can be understood as a

pþ ip paired state of the CFL [17,18]. Unlike ordinary
metals, the CFL has been argued to not have generic pairing
instabilities at low temperatures [19,20], although an earlier
study claimed the contrary [17]. If the CFL is stable against
pairing, it would be possible to have an ideal stable phase
transition from it into the MR state by adding sufficiently
large perturbations to the Hamiltonian. Originally, it was
argued that this transition would be first order [19], but this
conclusion was challenged more recently by studies that
argued that a stable continuous phase transition between the
CFL and MR states is possible [20,21]. Numerical studies
support a possible continuous transition [22–24], although
a definitive numerical conclusion is currently out of reach
due to system size limitations, we have found certain
features in the finite size spectra that indicate a possible
continuous phase transition [25].
Experimentally, the phase transition has been studied by

tuning subband level crossings [44,45] and more recently
hydrostatic pressure [46–48] in GaAs quantum wells. The
subband level crossing, however, produces a rather abrupt
change of the microscopic parameters of the Hamiltonian
and the transition is therefore likely first order [24]. The
isotropic hydrostatic pressure experiments, found the MR
state transitions into a compressible phase with anisotropic
transport properties, in resemblance to the transitions
induced by applying in-plane field [49–52], and therefore
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potentially placing the problem on a different universality
class from that of interest here. Additionally, one limitation
of the pressure-driven platform is that it is difficult to
capture it with an ideal Hamiltonian. Further details on
these precedents are in Ref. [25].
Models and key results.—The zero Landau level mani-

fold of BLG comprises eight internal Landau levels that we
denote by ψn;τ;σ, where n ¼ f0; 1g, τ ¼ fK;K0g and σ ¼
f↑;↓g designates orbits, valleys and spins labels, respec-
tively. The ψ1 orbitals can be approximated as having
weight on the n ¼ 0 and n ¼ 1 cyclotron Galilean orbitals
(denoted by ϕ0;1) [4,13]: ψ1;K ¼ ð ffiffiffiffiffiffiffiffiffiffi

1 − γ
p

ϕ1; 0;
ffiffiffi
γ

p
ϕ0; 0Þ

and ψ1;K0 ¼ ð0; ffiffiffiffiffiffiffiffiffiffi
1 − γ

p
ϕ1; 0;

ffiffiffi
γ

p
ϕ0Þ. Here, the different

components denote amplitudes on ðA;B0; A0; BÞ sites in
Fig. 2(b), and γ ∈ ½0; 1� is a parameter controlled primarily
by the perpendicular magnetic field whose typical values
are shown in Fig. 2(c). On the other hand, the ψ0 orbitals
can be approximated as having only n ¼ 0 Galilean
orbitals: [4,13] ψ0;K¼ðϕ0;0;0;0Þ and ψ0;K0 ¼ ð0;ϕ0;0;0Þ.
A general interaction Hamiltonian projected onto a multi-
flavor Landau level can be written as

V ¼
X

qfαg

vðqÞ
2A

Fα1α2ðqÞFα3α4ð−qÞ∶ ρ†α1α2ðqÞρα3α4ðqÞ∶; ð1Þ

where vðqÞ is the Fourier transform of the unprojected
interaction, Fαα0 ðqÞ is the density form factor determined
by the wave functions, and ραα0 ðqÞ are the flavor resolved
intra-Landau-level guiding center density operators (see,
e.g., Ref. [53]). We set magnetic length lB ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏc=eB
p

as
the unit of length and e2=εlB as the unit of energy.
Our ideal Hamiltonian of interest is comprised of

the Coulomb interaction projected onto the single
ψ1;τ Landau level. The form factor F11ðqÞ is given
by F11ðqÞ ¼ ð1 − γÞF1ðqÞ þ γF0ðqÞ, where F0;1ðqÞ ¼
expð−q2=4ÞL0;1½q2=2� are the form factors for n ¼ 0 and
n ¼ 1 Galilean Landau levels. Therefore the Hamiltonian
continuously interpolates from a n ¼ 1 Galilean Landau
level at small γ (weak perpendicular fields) to an n ¼ 0
Galilean Landau level at large γ (strong perpendicular
fields). We have found that at half filling the MR is the
ground state of this ideal Hamiltonian for γ ≲ 0.15, whereas
for γ ≳ 0.15 the CFL is the ground state. To demonstrate
that this conclusion remains robust in the presence of other
flavors and to delineate the region of parameters to realize
such an ideal limit within more realistic models, we will
study several modifications to this ideal Hamiltonian.
The first modified Hamiltonian is an SU(2) symmetric

version of the ideal Hamiltonian we just described, con-
taining two valleys ψ1α, α ¼ fK;K0g. Therefore the form
factors are Fα;α0 ðqÞ ¼ δα;α0F11ðqÞ. In this case we will show
that the ground state spontaneously polarizes onto a single
valley for γ ≲ 0.5 and therefore the phase transition region
from MR to CFL remains unmodified by the presence
of a second degenerate valley (or spin). This interesting
regime of vanishing single-particle valley splitting with

(a) (b)

(c)

FIG. 2. (a) The single particle splittings of BLG as a function of
interlayer bias u. (b) The schematic depiction of the zero Landau
level manifold of BLG jτnσi on ðA; B0; A0; BÞ sites. Here, τ ¼
fK;K0g≡ fþ;−g denotes valleys, n and σ are the LL and spin
index, respectively. (c) The relationship between parameter γ and
the magnetic field B. Figures (a) and (b) are from Ref. [15], the
data of (c) is from Ref. [4].

(a)

(b)

FIG. 1. (a) Phase diagram of two-orbital model. Δ10 is the
orbital splitting and γ parametrizes form factors controlled by
magnetic field. We identify the MR, two types of CFL states, and
an intermediate AGP. The shaded region is the expected range of
parameters accessed in BLG by tuning B½T� and the interlayer
electric bias u. (b) The phase diagram of the SU(2) two-valley
model [see Eq. (1)] as a function of B½T� or γ expected to be
realized at u ¼ 0. There are three phases: the valley polarized
MR, and the valley polarized, and unpolarized CFL states.
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spontaneous valley polarization can be best achieved at
total filling ν ¼ 3þ 1=2 near zero interlayer bias u ≈ 0. In
the Supplemental Material [25] we describe how valley
dependent interactions, which break the SU(2) valley
symmetry down to U(1), are not expected to significantly
affect the location of the phase transition.
The second modified Hamiltonian contains two

Landau levels with different orbital character and the same
valley ψαK, α ¼ f0; 1g. There is no flavor conservation
in this case and thus the form factors contain flavor off-
diagonal components, and are given by F00ðqÞ¼F0ðqÞ,
F11ðqÞ ¼ ð1 − γÞF1ðqÞ þ γF0ðqÞ, F10ðqÞ¼ ½F01ð−qÞ�� ¼ffiffiffiffiffiffiffiffiffi
1−γ

p
expð−q2=4Þ½−iðqxþ iqyÞ=

ffiffiffi
2

p �. We also add a single
particle splitting Δ10 between these two orbital flavors.
For this model, we will demonstrate that a single particle
splitting, Δ10, favoring ψ1;K over ψ0;K of about Δ10≳
0.2e2=ϵlB, is enough to reach the behavior of the ideal
Hamiltonian containing only the ψ1;K Hamiltonian previ-
ously described. According to our estimates the built-in
splitting between these orbitals in BLG is sufficient to reach
this limit, but additionally, we will show that this splitting
can be further enhanced at total filling ν ¼ −3þ 1=2 by
applying interlayer effective field, giving us confidence that
the ideal regime to realize the single-component MR to
CFL transition can be accessed in BLG, in agreement with
previous DMRG studies [4].
We will resort to numerical exact diagonalization in the

torus geometry [54,55] to investigate the nature of the
ground states as a function of γ and Δ10. Throughout
the main body of this Letter we will focus on the
Coulomb interaction, vðqÞ ¼ 2πe2=ϵjqj, however, in the
Supplemental Material we demonstrate that the key con-
clusions remain for more realistic interactions that account
for screening [25].
Two-valley model.—We begin by studying an SU(2)

symmetric model including the ψ1K and ψ1K0 valleys. The
ideal Hamiltonian describing a single valley can be
obtained simply by restricting to the SU(2) subspace with
maximal valley polarization. We denote the valley polari-
zation as Sz ¼ ðNK − NK0 Þ=2. Figure 3(a) depicts the value
of SU(2) Casimir operator S2, which determines the valley
polarization of the ground state as a function of γ. We find
that the system jumps from a polarized state into a singlet
at γ ∼ 0.5, although a small intermediate range of γ with
partial polarization cannot be completely discarded. It is
well documented experimentally [56–58] and numerically
[59–61] that in the SU(2) limit the CFL in the n ¼ 0 LL
(γ → 1) is a two-component unpolarized singlet. It is also
well established that in the SU(2) limit of an n ¼ 1 LL
(γ → 0) the MR state is a fully polarized ferromagnet
spontaneously breaking the SU(2) symmetry [59,62,63].
The polarization we find is consistent with these expect-
ations and it is therefore natural to conclude that in these
limits we have a valley singlet CFL state at γ → 1 and a
valley polarized state at γ → 0. However, we have found

another phase at intermediate γ, namely, a single compo-
nent Stoner-type CFL with spontaneous valley polarization.
We will now show that the quantum numbers of the

states for 0.15≲ γ ≲ 0.5 indeed are those of a fully
polarized CFL while those of the state present for γ ≳
0.5 correspond to a two-component unpolarized CFL. To
do so, we consider trial CFL wave functions [64] in the
torus [22,54,61,65]. We review the construction of these
trial CFL wave functions in Ref. [25]. The key quantum
number that allows direct comparison with numerics is the
many-body momentum, which, for the square torus reads
as K ¼ ðL=NÞPi ki ¼ ð2π=NÞPið−m2i; m1iÞ mod ðNÞ
[m1;2 ∈ ZmodðNϕÞ]. This momentum in units of ð2π=NÞ
is the same that labels the states of the spectrum in
Figs. 3(b) and 3(c) [66]. The cluster of momentum that
correspond to the states that minimize the trial mean-field
energy of a single component CFL [61] are ðKx; KyÞ ∈
ð2π=NÞfð1; 1Þ; ð4; 0Þ; ð0; 4Þg for N ¼ 8 particles and are
shown in Fig. 3(d). We see that these states have the same
quantum numbers of those obtained from exact diagonal-
ization for 0.15≲ γ ≲ 0.5. Following a similar analysis for
a two-component CFL singlet state [67], one can show that
for 8 particles there is a unique finite size cluster forming a
closed shell in momentum, namely, that the lattice of
displacement vectors transforms trivially under the point
group of the square torus. This state forms at momentum
ðKx; KyÞ ¼ ð2π=NÞð4; 4Þ ¼ ðπ; πÞ and is depicted in
Fig. 3(d). This indeed coincides with the momentum of
the ground state realized for γ ≳ 0.5 in Fig. 3(b).
Therefore, we have found that the SU(2)-valley invariant

system has three phases: (i) a valley polarized MR Pfaffian
state for γ ≲ 0.15, (ii) a valley polarized single component
CFL state for 0.15≲ γ ≲ 0.5, and (iii) a valley unpolarized
two component CFL state for γ ≳ 0.5, as illustrated in
Fig. 1(b). For the ideal Hamiltonian from Eq. (1) of a single

(a) (b)

(c) (d)

FIG. 3. (a) The SU(2) Casimir operator S2 as a function of γ.
(b) and (c) The energy spectra as a function of γ for the valley-
unpolarized sector (b) and valley-polarized sector (c). (d) The
cluster of momentum determined by the trial wave function for
polarized CFL (upper) and unpolarized CFL (lower).
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valley case then we would simply encounter phases (i) and
(ii). In the Supplemental Material [25] we demonstrate that
these conclusions still hold for larger system sizes and for
more realistic screened versions of the Coulomb interac-
tion, and we also provide arguments for why the essential
physics of the ground states under consideration are robust.
For bilayer graphene, this leads us to expect that the
transition between MR and CFL can be achieved near
ν ¼ �3þ 1=2 for B ∼ 20 T [see Figs. 1 and 2(b)].
Unfortunately, the Stoner type transition between the single
and two-component CFL states is expected at about
B ∼ 80 T. A related Stoner transition between single and
two component CFL states has been recently discussed in
monolayer graphene [68].
Two-orbital model.—A special feature of the zeroth

Landau level of BLG is the relatively small energy splitting
between the ψ1 orbits with n ¼ 1 cyclotron character and
the ψ0 orbits with n ¼ 0 cyclotron character. Therefore it is
important to assess how robust the phases are to quantum
fluctuations between these levels. To do so, we consider a
model with the Coulomb interaction, vðqÞ ¼ 2πe2=ϵjqj,
projected onto these two levels and an additional single
particle splitting Δ10 favoring ψ1. At total filling ν ¼ 1=2 it
is clear that in the limit in which Δ10 ≫ e2=ϵlB, we will
recover the physics of the ideal limit containing only the
half-filled ψ1 orbits.
The energy spectra of the two-orbital model versus γ and

Δ10 are shown in Fig. 4 and the Supplemental Material
[25]. We have found that this limit is achieved by a splitting
Δ10 ≳ 0.2e2=ϵlB as shown in Figs. 1(a) and 4(b). At smaller
Δ10 we have found another CFL state labeled CFL-I in
Fig. 1(a). CFL-I is the ordinary CFL realized at the half-
filled ψ0 orbit. The reason why this CFL becomes the
ground state near Δ10 ¼ 0 is that there is an exchange
energy gain to occupy n ¼ 0 orbits due to the smaller
spatial extension and hence larger exchange holes [53], and
therefore at half-filling the state is the conventional n ¼ 0
CFL. Here, Δ10 splits the degeneracy of the MR Pfaffian
and anti-Pfaffian. An interesting possibility is that it could
be possible, by controlling the interlayer bias, to tune
experimentally from Pfaffian to anti-Pfaffian by changing
the sign of Δ10, as further discussed in Ref. [25].

Interestingly, we have also encountered an anisotropic
gapless phase (AGP) at intermediate orbital splitting and
magnetic field in Fig. 1(a). This phase features a multi-
plicity of low lying states and a robust ground state
quasidegeneracy indicative of a gapless broken symmetry
state, as shown in Fig. 4(a) and in the Supplemental
Material [25]. Additionally, the spectrum has a high
sensitivity to changes of the aspect ratio of the torus,
which indicates the breaking of rotational symmetry, shown
in the Supplemental Material [25]. This phase could be
accessed in BLG near filling ν ¼ 3þ 1=2 and therefore we
hope that future numerical and experimental studies can
shed more light on its nature. We find that many phases
meet near the n ¼ 1=0 level crossing around Δ10 ∼
0.11e2=ϵlB and γ ≲ 0.15 [25]. It is possible that other
phases might be stabilized near this level crossing, such as
the non-Abelian 221 parton state, as advocated in Ref. [69].
We hope that future studies will further address this
interesting possibility.
Region of parameters accessed in BLG.—In Fig. 1(a) we

have superimposed the expected range of parameters [70]
that can be accessed in BLG by tuning perpendicular
magnetic field and the interlayer electric bias u. The region
for u ≤ 0 should be accessible at ν ¼ 3þ 1=2, while the
region of positive u ≥ 0 should be accessible for ν ¼
−3þ 1=2. This can be inferred from Fig. 2, which shows
that the single particle level splitting Δ10 decreases with juj
for ν ¼ 3þ 1=2 and increases with juj for ν ¼ −3þ 1=2.
Therefore, ν ¼ −3þ 1=2 can be brought much closer to the
ideal limit to study the ideal CFL to MR transition by
applying large interlayer bias, although different physics
could be potentially accessed ν ¼ 3þ 1=2 with the inter-
layer bias, such as the nearly SU(2) valley symmetric
conditions for u ≈ 0 and the new intermediate AGP shown
in Fig. 1(a).
Discussion and summary.—We have advanced a pro-

posal for realizing a particularly clean and widely tunable
phase transition between the MR and CFL states in BLG at
fillings ν ¼ �3þ 1=2. The phase transition can be tuned
by the perpendicular magnetic field, as in phase transitions
previously realized in monolayer graphene [2,14,71,72].
The simplest version of this phase transition is better
achieved at ν ¼ −3þ 1=2 at large interlayer biases
juj≳ 50 meV, where we have demonstrated that both
valley and orbital fluctuations become insignificant. This
filling factor at such interlayer biases is therefore an ideal
platform to study the CFL to MR transition. At the filling
factor ν ¼ 3þ 1=2 one encounters increased valley fluc-
tuations for vanishing interlayer bias, where one expects a
near SU(2) valley symmetry. We have shown that this
symmetry is spontaneously broken and the system is also
expected to transition from a spontaneously valley polar-
ized MR state into a spontaneously valley polarized Stoner
CFL enriched by the physics of valley symmetry breaking.
At this filling the interlayer electric field tends to enhance

(a) (b)

FIG. 4. The energy spectra of a two-orbital model as a function
of γ at different single particle splitting Δ10 between ψ0 and ψ1

orbits: (a) Δ10 ¼ 0.08, (b) Δ10 ¼ 0.2.
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n ¼ 0=1 orbital fluctuations, and this can be used to access
a potentially new AGP near the level crossing of n ¼ 0 and
n ¼ 1 orbits of a common valley as shown in Fig. 1(a).
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