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We investigate the quantum depinning of a weakly driven skyrmion out of an impurity potential in a
mesoscopic magnetic insulator. For small barrier height, the Magnus force dynamics dominates over the
inertial term, and the problem is reduced to a massless charged particle in a strong magnetic field. The
universal form of the WKB exponent, the rate of tunneling, and the crossover temperature between thermal
and quantum tunneling are provided, independently of the detailed form of the pinning potential. The
results are discussed in terms of macroscopic parameters of the insulator Cu,0SeO; and various skyrmion
radii. We demonstrate that small enough magnetic skyrmions, with a radius of ~10 lattice sites, consisting
of some thousands of spins, can behave as quantum objects at low temperatures in the millikelvin regime.

DOI: 10.1103/PhysRevLett.124.097202

Magnetic systems have been theoretically predicted
[1-9] and experimentally verified [10-16] to be good
candidates for the observation of macroscopic quantum
tunneling events and quantum to classical phase transitions
[17]. In such systems, a large number of elementary
magnetic moments display quantum behavior, as they
may coherently tunnel from a metastable configuration
to a more stable state. A particlelike configuration of the
classical magnetization field supports a collective mode of
position that tunnels out of the local minimum through a
potential barrier into the classically forbidden region.

Among the various magnetic solitons, skyrmions are in
the focus of current research because they appear as
attractive candidates for future spintronic devices [18,19].
Skyrmions are spatially localized two-dimensional (2D)
topological magnetic textures in a magnetic material, which
can be either metallic [20], a multiferroic insulator [21],
or ultrathin metal film on heavy-element substrates [22].
Typically they are classical objects with a size of the order of
50 nm and a dynamics that is governed by the Landau-
Lifshitz-Gilbert equation [23,24], although small-size sky-
rmions of 1 nm (a few lattice constants) have been recently
observed [25], inspiring studies on the quantum properties
of skyrmions [26-35].

In this Letter, we study the quantum depinning of a
magnetic skyrmion out of a potential created by an atomic
defect in a magnetic insulator, which removes the very
strong dissipation from itinerant electrons. We consider
the application of a magnetic field gradient, which tilts the
pinning potential and lowers the barrier height. The sky-
rmion then escapes out of its metastable state into the
classically forbidden region along the direction of the
magnetic field gradient. In the limit of small barrier height,
inertial terms can be neglected and the skyrmion dynamics
is governed by the Magnus force. In this respect, the
skyrmion dynamics resembles the Hall-type dynamics of a
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vortex in high-T'. superconductors [36,37] or a charged spin
texture in quantum Hall systems [38,39]. Nevertheless,
skyrmions in insulating ferromagnets provide the unique
setup to study tunneling events in situations when the
Magnus force, related to the fopological character of the
particle, is the dominant contribution over the intertial term.
The exact temperature-independent WKB exponent depends
on the pinning potential width, but not on its depth, in
contrast to the result for a massive magnetic particle. We
provide explicit expressions for the tunnel frequency, the
tunneling rate, and the crossover temperature between
quantum tunneling and thermal activation, for arbitrary
width and height of the pinning potential. We give estimates
of these quantities for the magnetic insulator Cu,0SeOs, and
find that skyrmions, under certain specified circumstances,
can exhibit macroscopic quantum behavior.

To study the macroscopic tunneling of a magnetic texture
m from a defect pinning center, we employ the imaginary
time formulation for path integrals with a Euclidean action
written in the form

SE:NAA/}(%(iSdZ/drd)(l—H)—i—H/JO), (1)

where the magnetization density at position r is represented
in polar coordinates, m(r) = [sin@®cos @, sin@sin®, cos O,
IT = cos O, S is the total spin, and N4 the number of layers.
The magnetic Hamiltonian H = J, [ dr(m) reads

om) 2 )
f(m)zlz);y(ari) +m-Vxm-—km:—hm,. (2)
The exchange coupling J, sets the energy scale, while
x = KJy/D} and h = gugHJ,/D} are dimensionless and
denote the strength of anisotropy and uniform magnetic

© 2020 American Physical Society


https://orcid.org/0000-0002-7073-6422
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.097202&domain=pdf&date_stamp=2020-03-03
https://doi.org/10.1103/PhysRevLett.124.097202
https://doi.org/10.1103/PhysRevLett.124.097202
https://doi.org/10.1103/PhysRevLett.124.097202
https://doi.org/10.1103/PhysRevLett.124.097202

PHYSICAL REVIEW LETTERS 124, 097202 (2020)

field, respectively. Dy and K denote the Dzyaloshinskii-
Moryia (DM) and anisotropy coupling, respectively, in
units of energy, and H is the external magnetic field in units
of T. Imaginary time 7 and space r variables are given in
reduced units. Physical units are restored as r' = rad and
7 =1/Jy, where d = J/D,, and « is the lattice constant.
Also, we set i = 1. In F(m), Eq. (2), we ignore dipolar
magnetic interactions, which are usually weaker than the
DM coupling and would stabilize skyrmions of much larger
size than considered here. The functional Eq. (2) supports a
stable skyrmionic solution, described by ® = ¢ + z/2 and
the approximate function ©(p) = 2tan~"'[(1/p)e~P~4)/r],
with  (p,¢) the polar coordinate system, py =

2/(2x + h), while A, which we obtain numerically from
the Euler-Lagrange equation of the stationary skyrmion, is
the skyrmion radius [29]. Magnetic skyrmions are charac-
terized by a finite topological charge Q,

1
Q:E/drm-(axmxaym), (3)
which denotes the mapping from the 2D magnetic system
in real space into the 3D spin space.

The presence of a crystal defect at r = 0 alters the
exchange and DM couplings as J/J, = 1 — J'e /% and
D/Dy = 1 — D'de "/ respectively [26], with J/, D’ being
the strength and 4, the size of the defect. On the classical
level, the interactions of skyrmions with atomic defects
crucially affect their mobility [40-45]. J' and D’ are
perturbations and the distortion of the skyrmion profile
is weak. The resulting pinning potential V', as a function of
the distance r, between the center of the defect and the
center of the skyrmion can be approximated by the function

1 Vo(4a)

- , 4
JO r(2)+a(/1d)2 ( )

Vp (r 0) =
where VO(ﬂd) = CoNAvg(/Id), Co = (1 - d/d/)J//Jo, and
d =J'/D" [46]. We take V((1;) > 0, in order for the
skyrmion to experience an attractive potential. The behav-
ior of a(4,4) and V,(4,) is summarized in Fig. 1.

To describe a skyrmion escaping from the potential well,
we need to employ a description which isolates the center
of mass of the skyrmion R(z) from all other degrees of
freedom. This is achieved by integrating out the magnon
degrees of freedom, within a quantum field theory method
which makes use of the Faddeev-Popov techniques for
collective coordinates [29]. Then one finds that the
Euclidean action of Eq. (1) takes the form

S, — /ﬂdf{iQ(écy—jJX)+%MR2+U(X,3/) . (5)
0

with R = (X.,)) and Q = 22N,SQ. Here, U(X,))=
V,(V X*+Y?) = Fex X, where V, is the pinning potential
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FIG. 1. Parameters Vj,a of the pinning potential V,(ry) of
Eq. (4), as a function of the defect size 1, with x = 0.463 and
h = 0.25, for a skyrmion of radius 1 = 1.86ad, with « the lattice
constant. Vertical dashed line indicates the value 1; = ad.

of Eq. (4) and F is a linear force acting on the
skyrmion collective coordinate equal to F. =
hexi0/0X [ drxm_ (r—R), as the result of an applied
out-of-plane magnetic field gradient. We introduce h,.,; =
gupNoH o J3/ D}, and H.,, is measured in T. The first term
in Eq. (5) is a Magnus force acting on the skyrmion
proportional to the topological number [47]. Here, M
denotes the effective mass which arises from the skyrmion-
magnon bath coupling in the presence of a pinning
potential [29] [for explicit expressions for M, see
Ref. [29] and, in particular, Eq. (32) therein]. A non-
negligible mass term gives rise to oscillatory modes in the
real-time dynamics of the skyrmion [48,49], which per-
forms a cyclotron rotation of frequency « Q/M.

For small values of the magnetic field F',,, the skyrmion
is trapped at its minimum position. As the field grows,
the barrier Eq. (4) is lowered and the skyrmion eventually
gets depinned at the coercive force F.. However, even for
F. < F,, the position of the skyrmion at the pinning
center becomes metastable and can tunnel out of the local
minimum, as long as 0 <e=1- F/F. < 1[2,8]. The
coercive force is given by F. = V'(R;), where R; is the
inflection point close to a local minimum, calculated by
requiring V/(R;) =0, V),(R;) > 0 and V§,3)(Ri) < 0. For
the potential of Eq. (4), we find R; = a//3.

Provided that effective mass in dimensionless units is
M NASU(%, where U is the height of the barrier [29],
and motivated by the fact that the optimum condition for
the observability of tunneling events is when the potential
barrier is small and narrow, it is convenient to separate the
fast cyclotron rotation of frequency, Q/M > 1, from the
slow motion of the guiding center [50]. This is achieved
by considering the real-time Lagrangian L, obtained upon
replacing imaginary time z with real time ¢ = —ir in the
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imaginary time Lagrangian £, with Sy = é} dtL and Sg
given in Eq. (5). The Hamiltonian H that corresponds to L
is given by

H =[P+ 0V + (P, = QX7 4+ U(XY), (6)

with P, = MX — QY and P, = MY + QX. Following
Refs. [37,50], instead of the original coordinates X, ) and
conjugated momenta P, P,, we define new operators X, ¥
and I, T, as X=P,/Q+ X, Y=-P /O + Y, II, =
—P,/0+ X, and I, =P,/Q+ Y, with [X, Y] = -2i/Q =
[T, I1,], while all other commutators vanish. These new
operators form a complete set of canonical variables which
can be used instead of the original coordinates. In the X, IT,,
representation, I, = (2i/Q)d/01l,, Y = (2i/Q)9/0X,
and the Hamiltonian (6) equals

H=H, + / AU (k. k)i t6 /DA (7)

where the fast part of the skyrmion Hamiltonian is
expressed in terms of H;=—(1/2M)9?/0I1; +
(1/2)M@2I12, and corresponds to a harmonic oscillator
with frequency w, = 20/M and mass M = M /4. The
ground state |¥) of H, (I1,[¥) = (27/Q)~"/*e~CM/4,
describes the cyclotron motion of the skyrmion at the zero
Landau level with ground state energy equal to w./2.
By averaging over the fast rotation (¥y|H|¥,) and taking
the zero Landau level as a reference point for energy,
H = (Yy|H|¥Y) — ®./2, we obtain H = U(X,Y), with
[X,Y] = —i/20. This approximation holds as long as
| < a, where [ is the magnetic length [ = adQ~"/?, while
in this limit [X, Y] — 0.

With these preparations, the problem is reduced to a
problem equivalent to that of the motion of a massless
charged particle in a strong magnetic field, with an action
of the form

Sy = / P Gli0XY - VX)+ UK. Y). (8
0

and a saddle point solution which is in general complex.
The criterion for the applicability of the WKB method for
the action Eq. (8) is the same as the 1D massive case [37].
We introduce a normalized potential of the form U(X,Y) =
V,(X.Y) = FeuX, with V,(X.Y)=V,(1,){1/a(14)*-
1/[X?+Y?+a(44)*]}, and Vy, a as in Eq. (4). We further
consider the potential in shifted coordinates U(X,Y) —
UX 4+ Xmins Y) = U(Xpmin, 0), where X,;, is defined as
OU(X,0)/0X|x_x = 0. In Fig. 2 we plot the potential
energy U for F; =0 and 0 < F,,, < F,.. The analysis is
significantly simplified if we expand around the inflection

FIG. 2. Schematic illustration of the pinning potential U as
function of position, for two values of the external field, F,;, = 0
and 0 < F < F.. U, denotes the height of the potential barrier
and X, the position of the turning point.

point X;, defined as 0*U(X.Y)/0X*|x_x y_o = 0. The
resulting expression is

_ Y? X X2 X
UX,Y)=2Viw— 1 -— Vix—(1=-1]. (9
(X.1) Yﬁ( Yd)+ X5< Xd> ©)

We also introduce Y, ;=c;/cr, X ;=c4/C3, Vinax =
ci/ed, and Vi =ci/c3, where ¢ = (1/2)V(g)+
[GFCV%Lz)/(_zV(lO))]1/2’ € = —(1/2)‘/(1,2),
—(1/6)V(30), and c; = [=(1/2)eF.V(30)]'/?. Derivatives
are denoted as V; ;) = Vi (x,,0), while VE(x,,0),
Vﬁ,l’z)(X,-, 0) < 0. For the particular choice of the pinning
potential, the parameters simplify as ¢; = c¢(1/ V3 +
2\/€/3), ¢y =c/a, c3=cy/2, cs =c\e, X4="2ay/c,
and Vi, = 4a*ce’/?, with ¢ = 9v/3V/Jy16a*.

To study the imaginary time trajectories and obtain a
real problem from the action Eq. (8), we perform the
additional transformation Y — iY, provided that the con-
dition Im[U(X, iY)] = 0 holds. The instanton trajectories
(X;,Y;) are the classical solutions of the equations of
motion in Euclidean time, 20Y,4+0U/0X; =0 and
—20 X, +0U/0Y,; = 0. By integrating the first (second)
equation with respect to X; (Y;) we arrive at the condition
U(X;,iY;) =0, where we also took into account that
the energy along the trajectory has to vanish, since it is
conserved by the dynamics [37]. Then one finds that
Y; = J(X;), which takes the following simplified form
for the expanded potential (9):

C3 =

ViV 3(X; = X4)
T(X)) = | X, —max_d . 10

The X, variable ranges from zero up to the turning point X,
calculated by the requirement 7(X,) = 0, and X; = 2a+/¢
for the expanded potential U, Eq. (9). The instanton
trajectories, defined by the equipotential lines
U(X;,iY;) =0, are illustrated in Fig. 3(a), for 1 = 1.86,
Aq = 2.52, and for ¢ = 0.096, with F. = 0.13. Figure 3(b)

097202-3



PHYSICAL REVIEW LETTERS 124, 097202 (2020)

FIG. 3.
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(a) Equipotential lines of the potential landscape U (X, iY), for a skyrmion of radius 4 = 1.86ad, trapped by a pinning center of

radius 4, = 2.54, and € = 0.096. The instanton trajectory describing the tunneling of the skyrmion is depicted by the black solid line,
while the red dashed line signals the position of the turning point X,. (b) X, as a function of ¢, calculated using the full potential U as
well as the expanded potential U of Eq. (9), for 4 = 1.86ad and A; = ad. The expansion is valid for € < 0.05. The inset illustrates the
linear dependence of X ; on the defect size, for a choice of ¢ = 0.01. (c) The tunneling exponent S, as a function of e for A = 1.86ad and
Aq = ad, while the inset depicts the dependence of S on the skyrmion size.

compares the values of X, derived by both the potential U
and U as a function of ¢, and implies that U is a good
approximation of U, as long as ¢ < 0.05.

The quantum tunneling of the particle into the classically
forbidden region is achieved by the nontrivial instanton
solution (X, Y;), in which the skyrmion starts at X =0
at 7 = —oo, reaches X = X,; at 7 = 0, and then returns to
X =0 at 7 = oo. This motion occurs with a characteristic
tunnel frequency,

ViV _ 9Vo(3€) 4 (ad)?

O 0IXaYy 16a|0|a*

where for the rest of the Letter units are restored. The
probability of tunneling is governed by the temperature-
independent WKB exponent e~°, with the tunneling action
Sy = S[X;, Y,] given by

, (11)

16ViaxJo

- Xq ,
So = 20101 [ ax () - (x| =1

(12)

where for the last approximate equality we used the
expanded potential (9), and is further simplified as
Sy =~ 5.6h|0|a*e’*/(ad)?. We note that the tunneling
action depends on the width of the pinning potential a,
but is independent of its height V|, [40], and the coercive
force F, in contrast to the tunneling exponent of domain
walls in ferromagnets [8]. The dependence of Sj on € is
depicted in Fig. 3(c), for a skyrmion with radius
A = 1.86ad, while the inset summarizes the dependence
of S, from the skyrmion size 4. The decay rate I" at zero
temperature is calculated as [51]

D o/h o 9V, (3€)/4(ad)?

I'~ =
2r 327h|Q)a*

=Sy/h

(13)

with a characteristic dependence on ¢ in the exponent
 €>/* and the prefactor « e!/* that provide experimental
signatures of quantum tunneling. To make quantum effects
observable, two conditions must be satisfied. First, the
inverse escape rate I'"! must not exceed a few hours [8],
and second, the thermal activation events over the barrier
do not dominate over the quantum tunneling-induced
transitions. The decay rate becomes determined solely
by quantum effects below a characteristic temperature,
T.=nUy/kgSy=5hw,/36ky [52], where Uy =4V .x/27
is the height of the potential barrier. Table I summarizes
typical values of the tunneling exponent S, the oscillation
frequency ,, the inverse tunneling rate I'"!, and the
crossover temperature 7., for various skyrmion radii and
values of ¢, for the chiral magnetic insulator Cu,0SeOs5,
which is known to support stable skyrmions [53]. For
sufficiently small skyrmions with a radius of a few lattice
sites, coherent tunneling out of a pinning potential is
expected to take place involving some thousands of spins,
within a few seconds, in the millikelvin temperature
regime. To optimize the observability of quantum tunneling
events, there is some flexibility to increase e in this
material, by reducing its thickness. For Ny =35 and
€ =0.04, we find I'"! = 136 s and 7, = 203 mK.

The action Eq. (1) assumes a quasi-2D behavior,
established when the transverse degrees of freedom are
frozen out due to the finite number of layers N,. The
transverse magnon excitations of a bulk sample, with
energy w(k,) = A(k. + I5')* + gupH + 2K — Al5* [55],
where [, = 2ad, acquire an additional finite size gap which
arises since k™" = z/w, with w = Nya. We introduce
A =2Jggug/aM,, with M, the saturation magnetization.
All transverse excitations freeze out below a critical
width given by w(T) = ng/(kgT — gugH — 2K), with
g=Al3" + (AkgT + A%l5% + AlgupH +2K])"/%. To make
an estimate for Cu,0SeO;, we use the parameters
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TABLEI Tunneling quantities for the chiral magnetic insulator Cu,0SeO5, with J, =3.34 meV, D=0.79 meV, K =6.8 x 107> meV,

M, =111348 kKAm™, a =8911 A, S =M, &’ /gup [54], and Q =1, A, = A, J'/Jy = 0.3, D' =0, and N, = 30.

/1 N € Xd (O So/h F_] Tc

4.3 nm 8.8 x 102 5% 1072 3.02 nm 2.90 x 1010 g1 288.76 551 x 101155 30.76 mK
2x1073 0.60 nm 1.30 x 1010 s~! 5.16 8.48 x 1078 s 13.76 mK
5x 107 0.30 nm 9.17 x 10 s~! 0.91 1.71 x 1072 s 9.73 mK

7.4 nm 2.61 x 103 5% 1072 5.3 nm 3.54 x 10° s7! 886.59 1.96 x 1037 g 3.76 mK
2% 1073 1.06 nm 1.58 x 10° s7! 15.86 0.03 s 1.68 mK
5x 1074 0.5 nm 1.12 x 10° 57! 2.80 9.25x 1078 s 1.19 mK

10.3 nm 5.05 x 103 5% 1072 7.40 nm 1.04 x 10° 57! 1731.46 5.56 x 1073 s 1.10 mK
2x1073 1.48 nm 4.66 x 108 57! 30.97 38.15x 10* s 0.49 mK
5x 10~ 0.74 nm 3.29 x 108 57! 5.47 455%x10°° s 0.35 mK

summarized in Table I and a choice of H = 345.6 mT and
A = 8.31a. For a freezing temperature of 7 = 2.2 K, we
find N7 = w(T)/a = 114 layers.

In the special case of a separable pinning potential
U(X,Y)=U,(X) 4+ U,(Y), the problem can be reduced
to a one-dimensional massive particle by integrating out the
Y variable from Eq. (8) [56], while the properties Eqgs. (11)-
(13) remain unaffected. Environmental degrees of freedom
are a source of dissipation and could suppress the prob-
ability of the tunneling process. Ohmic couplings have the
most detrimental effect on the tunneling rate of mesoscopic
systems [57], while super-Ohmic interactions have a very
small contribution [4]. In insulators and for low temper-
atures below the magnon gap, which is about 10 K for the
parameters of Table I, the super-Ohmic skyrmion-magnon
interaction is the main source of dissipation [30]. In the
presence of a pinning potential, the lowest Landau level
splits into quantized levels with spacing proportional to the
potential height [26]. Quantum tunneling processes that
involve the excitation of the skyrmion from the lowest
Landau level to the next higher one, mediated by thermal
excitations, are expected to provide a better estimation of
T. [58]. Such processes require a detailed understanding
of the rates of the thermal excitations, and we thus leave it
for future work. In view of the increasing interest in new
insulating materials that enable the stabilization of sky-
rmions [59], we anticipate that our results will initiate
experimental studies toward the possibility of observing a
quantum mechanical behavior at a mesoscopic scale for a
topological particle.

This work was supported by the Swiss National Science
Foundation (Switzerland) and the NCCR QSIT.
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