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Critical Slowing Down at the Abrupt Mott Transition: When the First-Order
Phase Transition Becomes Zeroth Order and Looks Like Second Order
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We report that the thermally induced Mott transition in vanadium sesquioxide shows critical slowing
down and enhanced variance (“critical opalescence”) of the order parameter fluctuations measured through
low-frequency resistance-noise spectroscopy. Coupled with the observed increase of the phase-ordering
time, these features suggest that the strong abrupt transition is controlled by a critical-like singularity in the
hysteretic metastable phase. The singularity is identified with the spinodal point and is a likely consequence

of the strain-induced long-range interaction.
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Despite their ubiquity across systems and scales [1-16],
first-order or abrupt phase transitions typically get only a
passing reference in a traditional statistical physics course
[17]. This is because they lack many of the remarkable
features of the second-order or continuous transitions that
arise from the diverging susceptibility [17-19]. The singu-
larity leads to a power-law divergence of the correlation
length, thereby leading to a description that is universal and
largely independent of the microscopic details [17-19].
Experimentally, this singularity manifests in the sharp
enhancement of the dynamical timescales (critical slowing
down) [18,20] and the variance of fluctuations (critical
opalescence) [18,21,22].

In this Letter, we experimentally demonstrate the slow-
ing down and enhancement of fluctuations at an abrupt
phase transition (APT) and argue that a certain class of
APTs is also controlled by critical-like singularities.
Specifically, we have studied the celebrated Mott transition
in V,05 [3,23-26]. As the scope of this work transcends
the microscopic and material details of the system under
investigation, here, we only highlight the two essential
characteristics [27]. First, that this is an APT is unambig-
uously inferred from the large latent heat [Fig. 1(a) (inset)].
Second is a curious feature—V,05 shares with some other
vanadates [4-7], nickelates [8—11], manganites [12], inter-
metallic alloys [13,14], other charge-ordered materials
[15,16], and spin-transition polymers [28-30])—that the
transition is always hysteretic.

Hysteresis indicates that this “mixed-order” behavior
(viz., the observation of critical slowing down as well as a
latent heat at the transition) [31,32] may originate from the
spinodal singularity [2,33-45]. This would then be a
manifestation of the classic mean-field physics, which is
already contained in van der Waal’s equation (without
Maxwell correction) [2,34,45]. Within equilibrium thermo-
dynamics, an APT occurs at the binodal, which is the point
where the free energy minima for the two phases have the
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same value [Fig. 1(c)]. But, nucleation barriers can lead to
supersaturation into a metastable phase [46]. The depth of
supersaturation is thus a function of the efficacy of the
fluctuations in affecting first passage to the lower energy
equilibrium phase [47]. It is believed that only in the
(zero-temperature or infinite-range interaction) mean-field
limit can the hysteretic passage though the metastable phase
extend up to the stability limits: the spinodals [2,45]. As
X7 = 8F/56¢* =0 at the spinodals (where F[p] is the
analytically continued free energy density, y is the suscep-
tibility [19], and ¢ is the spatially averaged order parameter),
the correlation length and relaxation times diverge at the
spinodals for the same reason that they do at the critical
point [2,33,35]. Consequently, the spinodals are fixed points
under the renormalization group transformation and should
display critical behavior and universality [41-43].

Although this instability has been studied in a variety of
zero-temperature noise-free systems [35,36,40,48,49], spi-
nodals have not been experimentally established in thermo-
dynamic systems where fluctuations are present [50]. From
the scaling behavior of the dynamic hysteresis and the
average qualitative nature of the phase ordering, we have
recently proposed that the Mott transition in V,05; does
indeed occur around such bifurcation points [23]. The
present work, by focussing on fluctuations, transcends
the mean-field picture to establish that the transition has
a genuine thermodynamic character. Our observations of
critical slowing down [20] and enhancement [37] of the
order parameter fluctuations indicate that one can at least
get close enough to the spinodal such that the singularity
controls many of the features of the transition, even if there
are no divergences [33,51].

On account of the criticality and the essential role of
hysteresis, it is meaningful to distinguish these transitions
from the usual first-order transitions [2]. Following the
Ehrenfest criterion, these may be called “zeroth order” because
the free energy is itself discontinuous [23,47] [Fig. 1(c)].

© 2020 American Physical Society
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FIG. 1. (a) Temperature dependence of resistance of V,0O;
shows a sharp and hysteretic transition around 153 K while
cooling and 162 K while heating. (Inset) A large latent heat is also
measured in a differential thermal analysis [23]. (b) Return-point
memory [15,52,53]: Although multivalued in the hysteretic
region, after any excursion out of a given hysteresis loop in
the form of a minor loop, the same value of the resistance is
recovered on return. Thus, the memory of the excursion is wiped
out. (c) Mean-field free energy as a function of the spatially
averaged order parameter ¢» for the compressible Ising model
(essentially, the % theory) [23] can be used to capture transition
semiquantitatively. The points corresponding to curves (i)-(v) are
also roughly marked on the resistance curve in Fig. 1(a). Curve
(iii) represents the binodal where the two minima are equal, and
curves (ii) and (iv) are the two spinodals where one minimum
becomes an inflection point. 7, is the relaxation time of fluctua-
tions measured through the autocorrelation of the resistance
noise, and 7; is the time associated with phase ordering.
(d) Location of extrema of the above free energy as a function
of temperature with the same points (i)-(v) marked. In the
temperature window of ~153-162 K where hysteresis is seen,
the order parameter ¢ has globally stable, metastable, and
unstable extrema.

V,05 is our material of choice [23] because of the sharp
and definitive APT with a large latent heat over a narrow
temperature window [Fig. 1(a)]. Although one cannot
define state variables in the metastable phase, the system
does show reproducible quasistationary behavior (essential
for the fluctuation spectroscopy), as seen in the return-point
memory [15,52] of hysteresis [Fig. 1(b)].

The temperature dependence of the resistance of a
typical polycrystalline sample V,0; used in the study,
after it has been thermally cycled between ~77 and 250 K
a few hundred times, is shown in Fig. 1(a), with the inset
showing the latent heat peaks in the differential thermal
analysis measurement [23]. The hysteresis window
(~153-162 K) can be seen to contain the metastable phase
for which the properties are history dependent, whereas the
regions outside this window seem to represent equilibrium

states. In rest of this Letter, the results for the heating and
the cooling transitions are shown in parallel [54] because
the similarity of the two datasets is central to the main
conclusions of the work.

Resistance-noise spectroscopy has been a powerful tool
for the study of fluctuations close to phase transitions
[9,11,14,20]. The experiments reported here involved care-
fully recording the time series of the fluctuating resistance
R with the sample temperature kept precisely fixed at the
given value [54].

Figures 2(a) and 2(b) show some of these time series of
the normalized resistance fluctuations AR(z)/R at different
temperatures after the removal of the very slowly varying
smooth background [54]. It is hard to discern any significant
departure from their Gaussianity [Figs. 2(c) and 2(d)]. To
make contact with the theory of phase transitions (see the
discussion below), let us assume that the essence of the
transition may be captured by a scalar order parameter
¢(x,1) equal to the fraction of the insulating phase in the
sample [23,55]. The time series of the sample resistance
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FIG. 2. Time series of the resistance fluctuations at different
temperatures. The left column depicts the measurements done
under cooling, and the right panel shows them under heating.
(a),(b) Normalized resistance fluctuations after the time series
were detrended by imposing a low-frequency cutoff of about
1073 Hz [54]. (c),(d) The probability distribution of fluctuations.
Solid lines represent the Gaussian distribution with zero mean,
and the given variance and the error bars roughly represent 99.7%
confidence for this distribution. (e),(f) Variance of the order
parameter fluctuations (5¢?(0)) roughly inferred from the re-
sistivity time series. The fluctuations are expected to follow the
divergence of y; around the spinodals [Eq. (5)].
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[Figs. 2(a) and 2(b)] can then be approximately converted to
the time series of the fluctuations in the spatial average of
this order parameter ¢ (¢) using results from the percolation
theory [54,56]. Enhanced variance of the order parameter
fluctuations (5¢?*(0)) around the transition [Figs. 2(e) and
2(f)] is the first indication of criticality [21].

Figures 3(a) and 3(b) show the corresponding normal-
ized power spectral density Sg(f)/R* in the frequency
window of 0.3 —0.003 Hz [54] at different temperatures.
The PSD obeys the characteristic f behavior [9,20], with
an increase in the value to x =~ 1.6 around the transition,
indicating a shift of the spectral weight of fluctuations to
lower frequencies. Such slowing down has been previously
observed in the resistance-noise data at the Mott critical
point [20] and simulations of the Ising model [22]. Noise
studies at the APT have also observed qualitatively similar
features [9,11,14]; but, the combination of the large
hysteresis, a very sharp transition, and the similarity in
the behavior along the cooling and the heating runs in bulk
V,0; studied here has made the identification with the
spinodal singularity more obvious. Our ongoing work on
epitaxial NdNiOj; thin films also qualitatively reproduces
Figs. 3(c) and 3(d), indicating its generality. Indeed, recent
works on a ferrite [16] and VO, [5,6] also invoked
“pseudocriticality” [38] to explain the slowed dynamics
around APT.
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FIG. 3. Critical slowing down of fluctuations around the

spinodals. (a),(b) Normalized noise power spectral density
(PSD) Sg/R? at some representative temperatures. (c),(d) Tem-
perature dependence of exponent u, where Sy~ f7. (e),(f) A
surface plot of f x Sg/R> to visualize the non-1/f behavior
when the spectral weight shifts to lower frequencies.

In Fig. 4(a), this signature of slowing down is further
evident from the relaxation time 7, of the autocorrelation of
the fluctuations [54]. In Fig. 4(b), we have also independ-
ently estimated the phase-ordering time z; where the
sample was shock heated and quench cooled, respectively,
at 50 K/ min to the desired target temperature marked on
the abscissa [54]. 7, also shows a distinct enhancement
around the transition [54]. Such an increase in the lifetime
with deeper supersaturation (and consequent reduction
in the energy barrier) within the metastable region
would seem counterintuitive for a thermally activated
process like nucleation, but it is the expected behavior at
the spinodal [2].

The spinodal singularities.—Let F[p] be the free energy
functional of the system with an order parameter ¢(X,7)
that denotes the fraction of the insulating phase in the
material [23,55]. The dynamical behavior of this stochastic
variable ¢(x, 1), which is a nonconserved scalar, is then
given by the dissipative model A [18]

%(p(x,t):—ﬂ%—l-é(x,t). (1)

Here, 4 is a kinetic parameter (that was previously
determined to be 3.5 s™' [23]), and the thermal noise
{(x,7) is (as usual) assumed to be & correlated, i.e.,
(C(x,1)¢(x', 1)) = 2kpT5(x —X')6(t — 1), with zero
mean [18]. The angular brackets denote canonical ensem-
ble averaging.

If =@, at the boundary of the metastable phase
(spinodal) in the mean-field approximation, we can
Taylor expand F[g] around this saddle point, keeping only
Gaussian fluctuations, viz.,
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FIG. 4. (a) The temperature dependence of the relaxation time
7, for the autocorrelation of the detrended resistance fluctuations,
and (b) the phase ordering time 7; during heating and cooling.
See Supplemental Material [54] for the details of the phase-
ordering experiments. Solid lines are to guide the eye. The region
between ~153 — 162 K is the metastable phase. Critical slowing
down reflected in both 7; and 7, . In the linear approximation, they
are equal to 7, and diverge with the susceptibility exponent.
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where
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and ! =kgT. G(x —x') is the correlation function
evaluated at ¢, and let G be its Fourier transform [18].

~ X[

If 6(py(t) is the Fourier transform of J&p(x,1)=
@(x,1) — ¢y, the first two moments of 6@y (¢) evolve as

(0 (1)) = (6% (0)) exp(—1/7y). (2)

(69 (1)69x (0)) = V Gy exp(~1/7y). (3)

7 = PGy /2 is the relaxation time for the kth mode.

The sample resistance, after correcting for percolation
effects [54,56], tracks the spatial average of the order
parameter [55], i.e., essentially the zero-wave vector
Fourier mode @;_o(t)[= [ dx¢(x.1)] = ¢(). Thus, our
measurements reflect Eqs. (2) and (3) with k£ =0. By
the sum rule [19], the isothermal susceptibility y; =
pGio. Tt follows that y; = [0°F/6¢*]" — oo at the
spinodals, which is in strict analogy with its behavior at
the critical point [18]. Phase ordering monitored through
resistance should thus evolve as

(6(1)) = (6¢(0)) exp(=t/70);

and the autocorrelation of the resistance noise should be
related to

70 = xr/% (4)

(0(1)6¢(0)) = VkgTyrexp(~t/zo); 79 =1/ (5)
The phase-ordering time 7; and the autocorrelation time 7,
[Fig. 4] are equal to 7, and diverge proportional to y;.
Equation (4) further shows that the variance (5¢?(0))
should also diverge as ys (critical opalescence), which is
in agreement with Figs. 2(e) and 2(f) [37]. Regarding
the slopes of the PSD (Fig. 3), the linear theory would
predict Brownian dynamics (4 =2) at the spinodals.
Theoretical estimates for the critical point of the two-
dimensional Ising model under Glauber dynamics suggest
u~ 1.8 [22].

Discussion.—It had long been an open question whether
the spinodal singularity could be seen in finite temperature
experiments. Although, for short-ranged interactions, the
spinodals are physically meaningless [2], in the opposite
limit of infinite-ranged interactions, the mean-field theory
becomes exact [45]. Thus, the point of contention is
whether the spinodal may be a meaningful concept for
long but finite-ranged interactions [50]. Theoretically,
the issue is addressed by constructing, as usual [18], a
relationship (Ginzburg criterion) between the relative order

parameter fluctuations, system dimensionality, and the
range of interactions as one approaches the spinodal
singularity [2,51,57]. Provided the interactions are suffi-
ciently long-ranged, one can get close enough to the
instability that finite temperature effects broaden the
transition but may not completely mask it [33,51,58],
mimicking a finite-size effect. This is indeed what we
see; the singularity still manifests as a very discernable (but
finite) growth in the susceptibility. That we have long-range
interactions in the system [59] is independently indicated
by the observations of broken ergodicity [Fig. 1(b)] and
very slow relaxation (Fig. 4), which are otherwise unusual
for hard condensed matter systems. Furthermore, the robust
presence of hysteresis itself indicates long-range forces on
rigorous theoretical grounds [60].

The electronic phase transitions in a number of corre-
lated electron systems are often also accompanied by
abrupt structural transitions on account of the large polar-
onic coupling [10,25]. The resulting strain fields are the
sources of long-range interactions [29,58,61]. Indeed, a
structural transition does seem like the feature shared across
disparate systems undergoing APT with pronounced hys-
teresis [3—16,23-25,28]. These are all candidates for the
zeroth-order transition belonging to the mean-field “uni-
versality class” [30,62].

We have not discussed disorder. Although the phase
coexistence and ramified fractal-like structures in the
transition regions [7] are also explained by the nonclassical
nucleation expected at the spinodal [34,58] without invok-
ing disorder, it is perhaps essential for understanding
avalanches [40,53] or even the return-point memory
[52,53] seen in Fig. 1(b). Although one would naturally
expect the smooth evolution suggested by Eq. (1) to be not
quite valid [63], the spinodal singularity itself is expected to
be robust to disorder for sufficiently long-range interactions
[66]. But, this is clearly an issue that requires further
systematic investigation.

Finally, catastrophes [47] in natural and social systems—
earthquakes, ecosystem collapse, climate change, onset of
depression, epilepsy, market crash—are sometimes mod-
eled after such zeroth-order transitions, with the spinodal
singularity signifying the loss of “resilience” [67].
Anticipating them 1is, of course, an important objective
of complex systems science. The idea that fluctuations can
carry precursory signatures of such an impending event, in
the form of critical slowing down accompanied by an
enhanced variance of fluctuations [67], is perfectly vindi-
cated by our work.
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