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We show an optical wave-mixing scheme that generates quantum light by means of a single three-level
atom. The atom couples to an optical cavity and two laser fields that together drive a cycling current within
the atom. Weak driving in combination with strong atom-cavity coupling induces transitions in a harmonic
ladder of dark states, accompanied by single-photon emission via a quantum Zeno effect and suppression of
atomic excitation via quantum interference. For strong driving, the system can generate coherent or
Schrödinger cat-like fields with frequencies distinct from those of the applied lasers.
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The laser was, immediately after its invention, consid-
ered a solution seeking a problem [1]. Since then, however,
the laser has opened up a plethora of possibilities that
led to many scientific and technological advances. They all
build on the fact that in a macroscopic optical resonator
many excited atoms can emit many photons that form a
bright but essentially classical field [2]. The situation
changes for a microscopic resonator where a single atom
and a single photon can interact strongly to create a
quantum-mechanical atom-photon molecule. This forms
the basis for the research field of cavity quantum electro-
dynamics (QED) [3–5] that has found novel applications in
quantum-information processing [6–8]. From a basic per-
spective, however, cavity QED remains a radically new and
still unexplored platform for the control of light-matter
interaction with possibilities that go far beyond those of a
laser [9].
Here, we report on a new phenomenon that allows one to

generate different quantum light fields with just one
optically controlled atom in its ground state. To this end,
we integrate cavity QED with the phenomenon of electro-
magnetically induced transparency (EIT) [10–16] and
predict continuous light emission without atomic excita-
tion. Specifically, we employ an atom in a Λ-type three-
level configuration (one excited and two ground states)
where one branch is strongly coupled to an optical cavity
and the other to a control laser. In the EIT regime, the atom
remains in a state known as a dark state in which the atom

does not absorb light due to destructive interference of
excitation amplitudes. By introducing a second laser field
that couples the two ground states, it is possible to drive a
closed cycle within the energy-level scheme of the atom. As
expected for several waves interacting with an optically
nonlinear atom, this gives rise to a new radiation field via an
optical wave-mixing process [17–19].
Not expected, however, is that a weak coupling laser

does not destroy the fragile dark states of the cavity EIT
system, even when all fields are on resonance with the
respective atomic transitions. We then find that the two
lasers, in combination with the cavity, drive optical tran-
sitions in a harmonic ladder of dark states that differ by one
photon in the cavity. The dark nature of these states
suppresses atomic excitation, but the entanglement with
the cavity field introduces photons. For a weak coupling
laser, the photons are produced one by one due to the
presence of a continuous quantum Zeno effect [20]. When
increasing the intensity of the coupling laser, the system is
perturbed and moves to a regime where the transitions to
the excited state become strongly detuned. This detuning
restricts the system dynamics to the ground states of the
atom, and now leads to a coherent cavity field with
uncorrelated photons. Remarkably, in all coupling cases
the new field comes from a single atom in its ground state.
Our system consists of an effective three-level atom

driven by two classical fields and strongly coupled to a
quantum cavity mode, as schematically shown in Fig. 1(a).
In this model, the ground states j1i and j2i are coupled to
the excited state j3i via either the cavity mode, with
coupling strength g and frequency ω, or the classical
(control) field, with Rabi frequency and frequency 2Ω23

and ωC23, respectively. We also consider another classical
field coupling the j1i and j2i ground states, with Rabi
frequency 2Ω12 and frequency ωC12 (here dubbed ground-
state coupling field). The Rabi frequencies, field
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frequencies, and atom-cavity coupling factors are all taken
to be real and non-negative. The Hamiltonian of this
system, in the interaction picture, is given by (ℏ ¼ 1)

H ¼ H0 þ V; ð1Þ

with H0¼ðgaσ31þΩ23σ32þH:c:Þ−ðΔ−Δ12−Δ23Þa†aþ
Δ23σ33−Δ12σ11 and V ¼ Ω12σ21 þ H:c: Here, a (a†) is
the annihilation (creation) operator of the cavity mode,
σkl ¼ jkihlj (k, l ¼ 1, 2, 3) the atomic operators which
describe the transition from the jli to jki states, and
H.c. stands for Hermitian conjugate. The detunings are
given by Δ12 ¼ ω21 − ωC12, Δ23 ¼ −ðωC23 − ω32Þ, and
Δ ¼ ω31 − ω, with ωkl the respective atomic transition
frequency. The dynamics of our system are governed by the
master equation _ρ¼−i½H;ρ�þ κð2aρa†−a†aρ−ρa†aÞþP

m¼1;2Γ3mð2σm3ρσ3m−σ33ρ−ρσ33Þ, where κ is the cav-
ity-field decay rate, and Γ31 and Γ32 the polarization decay
rates of the excited level j3i to levels j1i and j2i,
respectively. The master equation is solved numerically
using QuTip [21].
In Fig. 2 we plot the average number of intracavity

photons ha†ai and the population of the excited atomic
state hσ33i in steady state as a function of the detunings.
Three states and two avoided crossings can be observed in
both the excited state and the cavity populations. Two of
these states we designate bright states (see Supplemental
Material [22] for more information) because they contain
contributions from the atomic excited state j3i, while the
other is a dark state with only ground-state atomic con-
tributions. A two-photon condition ωC12 þ ωC23 ¼ ω31 can
be observed where the atomic excited-state population
remains low. This can be seen as a dark line in Fig. 2.
For most values of ωC12 and ωC23 satisfying this two-
photon condition, the cavity population is also negligible.
However, for the situation in which all fields are resonant
(Δ12 ¼ Δ23 ¼ 0), the system produces photons in the
cavity mode while the atomic population in the excited
state j3i remains low. Thus, despite resonant driving, the

atomic excitation is suppressed while photons are injected
into the cavity.
In order to understand the effect and explore its conse-

quences, we proceed in two steps: we first present a
simplified picture and then provide a full quantum-
mechanical explanation for the two cases of weak and
strong ground-state coupling. The simplified picture starts
from the observation that for vanishing detunings the
Hamiltonian, expressed in a new atomic basis fjþi; j−ig
with j�i ¼ ðj1i � j2iÞ= ffiffiffi

2
p

, can be understood as two
independent Λ schemes. This is displayed in Fig. 1(b)
where two cavity EIT configurations [13] are shown (see
Supplemental Material [22] for details) for which an
interference process can be expected. This is in fact the
case in the limit of very weak ground-state coupling
[Ω12 ≪ κ < ðg;Ω23Þ], i.e., when the two states jþi and
j−i are degenerate. In this case both the cavity and control
field remain almost resonant with the atomic transitions
jþi ↔ j3i and j−i ↔ j3i, respectively. Interference of the
absorption paths then avoids the excitation of the atom,
keeping it always in the subspace of the dark states which
involve only the atomic states jþi and j−i. In the strong
ground-state coupling limit [Ω12 > ðg;Ω23Þ ≫ κ] the
degeneracy of the two states jþi and j−i is lifted and
the system is no longer resonantly driven. This regime can
then be well described by two separate processes involving
only a classically driven two-level atom coupled to a cavity
mode. We now present the full quantum description for the
two considered cases.
Weak ground-state coupling regime.—For ðg;Ω23Þ >

κ ≫ Ω12, we treat the coupling field as a perturbation. In
this case, the effective Hamiltonian, written in terms of the
dark states of the unperturbed Hamiltonian H0, reads (see
Supplemental Material [22])

1

2

3Δ23

Δ12

-
+

3
(a) (b)

FIG. 1. Energy-level diagrams. (a) shows the level scheme of
the system in the bare state basis where the driving strengths Ω12

andΩ23, the detuningsΔ12 andΔ23, and the atom-cavity coupling
strength g are depicted. (b) shows the same system in the dressed
state basis with new effective coupling strengths. FIG. 2. Steady state photon number and atomic excited-state

population. Shown are two-dimensional color plots of the
respective observable as indicated in the upper left corner of
the plot against Δ12 and Δ23. All parameters are given in terms of
the cavity-field decay rate κ=2π ¼ 1. The other parameters are
g ¼ 10κ, Ω23 ¼ 3κ, Ω12 ¼ 0.1κ, and Γ31 ¼ Γ32 ¼ 0.5κ.
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Heff ≃ −Ω12

X∞
n¼0

QnRnþ1jΨ0
nþ1ihΨ0

nj þ H:c:; ð2Þ

with Qn ¼ Ω23=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2nþ Ω2

23

p
, Rn ¼ g

ffiffiffi
n

p
=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2nþΩ2

23

p
,

and the dark states (for zero eigenvalues) [16]

jΨ0
0i ¼ j1; 0i; ð3Þ

jΨ0
ni ¼ Qnj1; ni − Rnj2; n − 1i: ð4Þ

Here, n ¼ 1; 2;… denotes the photon number in the cavity.
The remarkable feature of this Hamiltonian is that it
describes transitions only between dark states, and that
bright states are not involved. Starting from the lowest dark
state jΨ0

0i the system is coherently driven along the
harmonic ladder of dark states with a rate that is propor-
tional to the ground-state coupling constant Ω12, thereby
changing the cavity excitation quanta by quanta. In this
process the system remains always in the subspace of dark
states. As these have no overlap with the atomic excited
state j3i, its population remains negligible. This result is
particularly important since it implies that any atomic decay
does not influence the dynamics of the system, thereby
eliminating problems such as the decay to other atomic
states besides the relevant ones considered here.
In the regime g ≫ Ω23 the effective Hamiltonian can be

further simplified, with the result

Heff ≃ −Ω12jΨ0
1ihΨ0

0j −
X∞
n¼1

Ω12Ω23

g
ffiffiffi
n

p jΨ0
nþ1ihΨ0

nj þ H:c:

ð5Þ
Obviously, the transition strength between dark states
decreases nonlinearly with increasing n so that transitions
are mainly driven between the first two dark states, i.e.,
between the states which contain zero and one photon only.
This has important consequences for the steady-state
population distribution of the dark states. To understand
which of these states contribute most to the dynamics of the
system we also need to calculate their decay rates which
can be derived via Fermi’s golden rule (see Supplemental
Material [22]):

Γ0
n ¼ jhΨ0

n−1j
ffiffiffi
κ

p
ajΨ0

nij2 ¼ nκ
�
Ω2

23 þ g2ðn − 1Þ
Ω2

23 þ g2n

�
: ð6Þ

Notice that the higher dark states decay only into lower
ones since the cavity dissipation affects only the photon
number and therefore cannot induce transitions from dark
states to bright states [16]. For g ≫ Ω23 the decay rates of
the dark states jΨ0

1i and jΨ0
2i reduce to Γ0

1 ≃ κðΩ23=gÞ2 and
Γ0
2 ≃ κ, respectively. Thus, in this limit, the suppression of

higher-photon number states due to the nonlinear driving
[∼1=

ffiffiffi
n

p
, see Eq. (5)], together with the fact that dark states

with more photons decay faster than the single-photon dark
state, implies that these higher-lying states remain largely
unpopulated.
The situation is depicted for the lowest three dark

states in Fig. 3(a), and simulation results are plotted in
part (b) of the figure. It displays the steady-state
populations P0

n of the dark states jΨ0
ni as a function of

the normalized coupling strength Ω12=κ. For small Ω23,
as shown in the upper plot, the population is equally
distributed between jΨ0

0i and jΨ0
1i, and the system can be

well described as a two-level system with these two dark
states. Only when Ω23 is comparable to the cavity
coupling g, as depicted in the lower plot, higher dark
states become populated and the two-level character is
lifted, as further discussed below.
The finding that a harmonic ladder of states effec-

tively reduces to the lowest two states can be interpreted
differently: as the effective driving strength of the higher
dark states (n > 1) is much smaller than the cavity
decay rate κ, the atom-cavity system is constantly
projected into the subspace spanned by jΨ0

0i and jΨ0
1i

and therefore experiences a continuous quantum Zeno
effect [20], that blocks access to higher rungs of the
dark state ladder.

(a)

(b) (d)

(c)

FIG. 3. The sketch in (a) shows the level scheme and the
effective dark state driving strength and decay constant for weak
ground-state coupling. Plot (b) shows the population of the first
few dark states jΨ0

0;1;2i (green solid, red dashed, purple dotted)
againstΩ12 for differentΩ23 (g ¼ 10κ). The plots (c) and (d) show
photon statistics and the relative photon number, respectively,
against the coupling strength of the ground states j1i and j2i for
two different values of the atom-cavity coupling strength g (blue
solid line g ¼ 10κ, orange dashed line g ¼ 0.5κ). The other
parameters are Ω23 ¼ 3κ and Γ31 ¼ Γ32 ¼ 0.5κ.
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The two-level character of the system as predicted by the
Zeno blockade has important consequences for the nature
of the emitted light. This is demonstrated in Fig. 3(c) which
features the equal-time photon correlation function
gð2Þð0Þ ¼ ha†2a2i=ha†ai2. It goes to zero in the limit of
weak driving (Ω12 → 0) and strong atom-cavity coupling g
(blue solid line). It follows that photons are emitted one
after the other. The effect is nontrivial and also predicts,
e.g., Rabi oscillations between the two lowest dark states,
even for vanishing cavity decay (see Fig. S3 from the
Supplemental Material [22]). On the other hand, for weak
atom-cavity coupling, gð2Þð0Þ is close to 1 even in the
limit of Ω12 → 0, as shown by the orange dashed line in
Fig. 3(c). In this case, the coupling field can induce
transitions to higher dark states, and also to bright states,
since the energy difference between the dark and the bright
states (E�

n ¼ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ng2 þ Ω2

23

p
) is small, see Fig. 3(a).

The figure of merit of the excitationless emission is
emphasized in Fig. 3(d) which demonstrates that photons
are created in the cavity while avoiding the excited atomic
state. The effect is characterized by the ratio ha†ai=hσ33i
which can be much larger than one. It is important to stress
that this occurs only in the strong atom-cavity coupling
regime: for small values of g the atom is strongly excited,
thus resulting in a ratio ha†ai=hσ33i smaller than one. The
ratio can be high (several hundred for the parameters used)
only in the strong-coupling regime of cavity QED.
Beyond the discussed Zeno blockade, another novel

effect appears in Fig. 3(b). It concerns the population in
the dark state jΨ0

1i that can be higher than the pop-
ulation in the ground dark state jΨ0

0i. Such inversion
effect cannot happen in a standard two-level system, at
least not in steady state, but occurs here due to the fact
that the strong atom-cavity coupling forces the atom to
remain in state j2i. This state has a projection only on
the entangled dark state jΨ0

1i, not jΨ0
0i. Thus, as the

effective Hamiltonian from Eq. (5) primarily promotes
continuous transitions between jΨ0

0i and jΨ0
1i, some

degree of steady-state entanglement is expected in our
system. This is indeed the case: for the parameters of
Fig. 3(b) the concurrence C [25], a measure of the
degree of entanglement between bipartite 2 × 2 systems,
reaches a value of C ≃ 0.2, thus proving that our system
truly forms an atom-photon molecule.
Additionally, for Ω23 comparable to g, the effective

Hamiltonian in Eq. (2) predicts non-negligible transitions
to higher dark states where all decay rates Γ0

n are of the same
order (Γ0

n¼1;2;3;… ∼ κ). Thus, as we see in Fig. 3(b), appreci-
able population accumulates in the higher dark states.
Strong ground-state coupling regime.—The regime

Ω12 ≫ ðg;Ω23Þ > κ is characterized by a strong splitting
of the ground states jþi and j−i, as shown in Fig. 1(b). This
leads to an off-resonant interaction of the atomwith the laser
and the cavity field. Thus, we basically observe two distinct

dynamics happening simultaneously, each one describing an
out-of-resonance driven two-level atom coupled to a cavity
mode. Although the cavity mode and the control field
oscillate at very distinct frequencies and couple different
atomic transitions, in the new basis both fields couple the
same transitions, from jþi or j−i to j3i. In this case we can
also derive an effective Hamiltonian, following [26], result-
ing in (see Supplemental Material [22] for details)

Heff ≃ −
1

2Ω12

½g2a†aþ Ω2
23 þ ðgΩ23aþ H:c:Þ�σþþ

þ 1

2Ω12

½g2a†aþ Ω2
23 − ðgΩ23aþ H:c:Þ�σ−−: ð7Þ

This means that we have an effective nonresonant
coherent drive on the cavity mode either if the atom is in
the state jþi or in the state j−i, with the same probability.
This can be made clearer as follows. Applying the unitary
transformation UTðtÞ ¼ exp ½iδta†aðσþþ − σ−−Þ�, with
δ ¼ g2=2Ω12, the Hamiltonian above becomes HT≃
−θðσþþ−σ−−Þ−ðλaeiδtþH:c:Þσþþ−ðλae−iδtþH:c:Þσ−−,
with θ ¼ Ω2

23=2Ω12 and λ ¼ gΩ23=2Ω12. The first term in
this Hamiltonian introduces positive (negative) time-depen-
dent phases in the atomic states when the atom is prepared in
the jþi (j−i) state. The second and third terms describe
nonresonant driving processes on the cavity mode, with
detuning δ (−δ) if the atom is prepared in the state jþi (j−i).
Both nonresonant processes generate a coherent field inside
the cavity, but with an oscillating amplitude and rotating in
opposite directions in phase space. Thus, by properly
choosing the initial atomic state and the interaction time,
it is possible to generate a superposition of coherent states
with opposite phases. For instance, considering the ideal
situation, i.e., without cavity decay, by preparing the system
in the state jΨð0Þi ¼ j1; 0i ¼ ð1= ffiffiffi

2
p Þðjþi þ j−iÞj0i, its

state at time t will be (see Supplemental Material [22]
for details) jΨðtÞi ¼ UðtÞjΨð0Þi ¼ ð1= ffiffiffi

2
p Þðeiϕjþijαþiþ

e−iϕj−ijα−iÞ, with UðtÞ being the evolution operator,
ϕ ¼ Ω2

23t=2Ω12, and α�¼�Ω23=gðe∓ig2t=2Ω12−1Þ. Then,
by measuring the atom in the basis fj1i; j2ig one projects
the cavitymode into the “Schrödinger-cat” states ðeiϕjαþi �
e−iϕjα−iÞwithþ (−) referring to detection of the atom in the
state j1i (j2i).
Including the decay rate of the cavity mode, both

nonresonant coherent drivings present in the Heff will
generate coherent steady states in the cavity mode,
although with different amplitudes. Because of the cavity
decay, the steady state of the system will be a complete
mixture of the states jþi and j−i. By tracing over the
atomic variables, the final steady state of the cavity mode
will be given by ρss ¼ 1

2
ðjβþihβþj þ jβ−ihβ−jÞ, with

β� ¼ −i½gΩ23=ð�ig2 − 2Ω12κÞ�. For very small κ such
that g2 ≫ 2Ω12κ, we have βþ ≃ −β− ¼ −Ω23=g, which
means a mixture of two coherent states completely out of
phase. On the other hand, for g2 ≪ 2Ω12κ, both coherent
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states will have the same amplitude and phase βþ ≃ β−≃
iðgΩ23=2Ω12κÞ. Thus, the steady state will be a perfect
coherent state. This is what we see in Fig. 3: forΩ12 > g the
correlation function gð2Þð0Þ reaches 1 (coherent state). It is
important to emphasize that, for this regime, the coherent
state amplitude β scales inversely with the drive strength
Ω12. Therefore, stronger driving will actually reduce the
coherent field, indicating that this is not merely a cavity-
filling effect. It is alsoworth noting that this coherent field is
generated in the cavity mode, with a specific frequency, by
driving the atomic system with laser fields with distinct
frequencies.
In order to test whether the presented scheme is

experimentally feasible, we performed extensive simula-
tions with a complete set of currently achievable parameters
including the full atomic level scheme of rubidium as an
example. As further discussed in the Supplemental Material
[22], we find a behaviour that is quantitatively different
but qualitatively similar to the one predicted by the
idealistic model. For example, the value of almost 400
for ha†ai=hσ33i as discussed in the context of Fig. 3(d)
reduces to just below 100. Although experimental imper-
fections decrease the excited-state suppression by a factor
of about four, the physical effects are robust and should be
clearly visible in a realistic experiment.
To conclude, we have shown how continuous driving of

a cycle between three internal atomic states can generate
quantum light via a parametric wave-mixing process. The
effect is experimentally robust but requires a combination
of strong atom-photon coupling to a cavity and electro-
magnetically induced transparency by a cavity. Light
emission and absorption result from transitions between
dark states that are superpositions of atomic ground states
entangled with cavity photon-number states. The ground-
state emission suppresses decoherence due to the finite
lifetime and the decay of the excited atomic state to
uncoupled states. This effect is not only valuable in
experiments with natural multi-level atoms but could also
be beneficial for artificial atoms like quantum dots that
reach strong emitter-cavity coupling but suffer from a
short-lived excited state [7]. In the near future we will
investigate the effects described here experimentally, and
also plan to extend the scheme by driving the ground-state
transition with a laser and a vacuum cavity in mutual
resonance with a second excited state. This results in a
double cavity QED [27] and double cavity EIT situation
that could be employed to generate three-particle
entangled states between one atom and two light fields.
The atom then serves as a quantum nonlinear medium
with properties that are radically different from those of a
classical three-wave-mixing crystal.
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