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We show theoretically how to strongly couple the center-of-mass motion of a micromagnet in a harmonic
potential to one of its acoustic phononic modes. The coupling is induced by a combination of an oscillating
magnetic field gradient and a static homogeneous magnetic field. The former parametrically couples the
center-of-mass motion to a magnonic mode while the latter tunes the magnonic mode in resonance with a
given acoustic phononic mode. The magnetic fields can be adjusted to either cool the center-of-mass
motion to the ground state or to enter into the strong quantum coupling regime. The center of mass can
thus be used to probe and manipulate an acoustic mode, thereby opening new possibilities for out-of-
equilibrium quantum mesoscopic physics. Our results hold for experimentally feasible parameters and
apply to levitated micromagnets as well as micromagnets deposited on a clamped nanomechanical
oscillator.
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In quantum optomechanics, coupling the mechanical
mode of a macroscopic object to a low entropy and narrow
mode of the electromagnetic field has enabled ground-state
cooling of micromechanical oscillators both in the optical
and in the microwave regime [1,2]. In addition, strong
optomechanical coupling has allowed us to generate
entanglement between micromechanical and electromag-
netic modes [3,4], as well as entanglement between remote
micromechanical oscillators [5]. In this Letter, we propose
a novel analog to linearized quantum optomechanics [6]
that does not require us to couple the mechanical oscillator
to an electromagnetic field mode. Instead, we propose to
couple the micromechanical oscillator to its internal quan-
tum degrees of freedom.
Our proposal considers the center-of-mass motion of a

micromagnet, which is either levitated [7–11] or attached to
a high-Qmicromechanical oscillator [12–16]; see Fig. 1(a).
In the presence of properly tuned magnetic fields, we show
how the inherent strong magnetoelastic coupling in the
micromagnet can be utilized to achieve an acoustomechan-
ical coupling between the center-of-mass motion of the
micromagnet and one of its internal acoustic phononic
modes. We show how both ground-state cooling and
strong quantum acoustomechanical coupling can be
achieved with experimentally feasible parameters. Our
proposal thus establishes a method to probe and control
collective quantum excitations of a levitated nanoparticle,
thereby opening new possibilities for studying out-of-
equilibrium quantum mesoscopic physics, such as, e.g.,
internal equilibration and radiative cooling with a levitated
nanoparticle [17].

We consider a spherical micromagnet of radius
R trapped in a harmonic potential, assumed nonmagnetic
for simplicity. The micromagnet interacts with an
external magnetic field, which has a homogeneous
component B0 ¼ B0ez, and an oscillating gradient

(b)(a)

(c)

FIG. 1. (a),(b) Schematic illustration of our proposal. (c) Mag-
netoelastic coupling strength between the Kittel magnon and the
first 30 acoustic spheroidal modes with angular (azimuthal) mode
number 2 (1) versus acoustic mode frequency. The upper scale
indicates the B0 needed to tune magnon and phonon in resonance.
All axes are normalized to be independent on the micro-
magnet radius R. Parameters correspond to yttrium iron garnet
(YIG): ρm ¼ 5170 kg=m3, MS ¼ 5.87 × 105 A=m, jγj ¼ 1.76 ×
1011 T−1 s−1 [18,19].
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Bdðr; tÞ ¼ bgð−xex þ zezÞ cosðωdtÞ, with bgR ≪ B0

[Fig. 1(b)]. The Hamiltonian describing the dynamics of
the relevant coupled degrees of freedom of the micro-
magnet is given by

ĤðtÞ
ℏ

¼ ωxb̂
†b̂þ ωmŝ†ŝþ ωpâ†âþ gðŝ†âþ ŝâ†Þ

þGx cosðωdtÞðŝ† þ ŝÞðb̂† þ b̂Þ: ð1Þ

The first three terms describe, using bosonic operators, the
free dynamics of the center-of-mass motion along the x axis
(b̂), the magnonic mode (ŝ), and an acoustic mode (â)
whose frequency is close to the magnonic mode frequency.
The fourth term corresponds to the magnetoelastic coupling
between the magnon and the acoustic phonon, whereas the
last term describes the time-dependent coupling between
the magnon and the center-of-mass motion due to the
inhomogeneous drive Bdðr; tÞ. Similar field inhomogene-
ities have been exploited to couple internal and external
degrees of freedom in levitated nanodiamonds [20–23].
The Hamiltonian Eq. (1) is obtained as follows; see

Ref. [24] for further details. First, one quantizes spin waves
in a spherical micromagnet around the equilibrium point
induced by B0, employing the dipolar, isotropic, and
magnetostatic approximations [19,25–27], which are valid
for micromagnet sizes 10 nm≲ R≲ 1 cm. We focus on the
Kittel magnonic mode, which corresponds to a homo-
geneous magnetization precessing around the z axis with
frequency ωm ¼ jγjB0, where γ is the gyromagnetic ratio.
Second, one quantizes linear elastic waves in a sphere
[28,29], obtaining analytical expressions for the acoustic
modes with frequencies proportional to R−1. Within this
linear theory, elastic waves and center-of-mass motion are
uncoupled. Third, the magnetoelastic interaction is calcu-
lated [18,30], and, for nanometer- and micrometer-sized
magnets, the leading contribution is of quadratic form. In
addition, one obtains selection rules showing that the Kittel
mode only couples to acoustic phononic modes of the
family Sn21, that is, spheroidal modes with fixed angular
(azimuthal) mode index 2 (1) and arbitrary radial positive
integer index n. By tuning B0 such that the Kittel magnon
frequency ωm is close to the resonance frequency of an
acoustic mode Sn21, and using the rotating wave approxi-
mation, valid for sufficiently small coupling rate and
magnon-phonon detuning, the magnetoelastic interaction
is described by the beam-splitter form given in Eq. (1). The
scaled coupling rate (g ∝ R−1=2) is shown in Fig. 1(c) for
n ¼ 1;…; 30, which also evidences the well-discretized
spectrum of the acoustic phonons. Finally, the interaction
between the center-of-mass motion and the Kittel
magnon, namely the last term in Eq. (1), is obtained from
the micromagnetic energy density term accounting for the
magnetic dipolar coupling with Bdðr; tÞ. Assuming the
motional amplitude of the center of mass to be much

smaller than B0=bg, the R-independent coupling rate is
given by Gx ¼ bgVMKx0=ð2ℏÞ, where V is the volume

of the micromagnet, MK ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏjγjMS=2V

p
the zero-point

magnetization of the Kittel magnon, MS the saturation
magnetization [19,27], and x0 ¼ ½2ρmVωx=ℏ�−1=2 the zero-
point motion of the center-of-mass oscillation along the x
axis, where ρm is the mass density of the micromagnet [31].
The system dynamics is described by the master equa-

tion _ρ ¼ ðiℏÞ−1½Ĥ; ρ̂� þ L½ρ̂�, where ρ̂ is the density oper-
ator and L½ρ̂� ¼ Lm½ρ̂� þ Lp½ρ̂� þ Lx½ρ̂� accounts for the
unavoidable dissipation. Such dissipators, for j ¼ m, p, x,
are given by Lj½ρ̂� ¼ γj½ðn̄j þ 1ÞLôj þ n̄jLô†j

�, where for

compactness we define fôm; ôp; ôxg≡ fŝ; â; b̂g and
Lô½ρ̂�≡ ô ρ̂ ô† − fô†ô; ρ̂g=2. We have introduced the
decay rate γj and thermal occupation number n̄j ¼
ðexp ½ℏωj=kBTe;j� − 1Þ−1, where kB is the Boltzmann
constant and Te;j is the temperature of the thermal
environment of each degree of freedom. The above master
equation is quadratic and can thus be solved exactly. It is
convenient to define mechanical and acoustic quality
factors as Qx ≡ ωx=γx and Qp ≡ ωp=γp, respectively.
Experimental values for Qx exceed Qx ≳ 108 both in
nanofabricated resonators [32–35] and in levitated
systems [36,37]. Regarding Qp, unusually high values
(Qp ≈ 105–107) have been reported in millimeter-sized
yttrium iron garnet (YIG) spheres [18,38], but no mea-
surements have been performed for isolated micromagnets
of the sizes considered in this Letter. However, for
sufficiently isolated mechanical microresonators, Qp is
known to be limited by indirect interactions with other
acoustic modes, and reaches values up to Qp ≳ 5 × 1010

[18,39] when consecutive acoustic modes are far detuned
(≳GHz). Therefore, one might expect values of Qp as high
as ∼1010 in our system.
To discuss the center-of-mass dynamics, it is

convenient to diagonalize the magnon-phonon Hamiltonian
through a Bogoliubov transformation, ωmŝ†ŝþ ωpâ†âþ
gðŝ†âþ H:c:Þ ¼ P

α¼1;2 ωαĉ
†
αĉα. The new normal modes

are hybrid magnon-phonon excitations given by ĉ1 ¼ ðŝ −
χâÞ=N and ĉ2 ¼ −ðχŝþ âÞ=N , where N ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ χ2
p

,
χ ≡ −2g=½Δ − ðΔ2 þ 4g2Þ1=2�, andΔ≡ ωm − ωp. The pho-
non (magnon) fraction in mode ĉ1 (ĉ2) is given by ðχ=N Þ2.
Both the factor χ ∈ ½0;∞Þ and the eigenfrequencies 2ωα ¼
ωm þ ωp þ ð−1ÞαðΔ2 þ 4g2Þ1=2 are fully tunable through
the external field B0. In terms of the normal modes and in the
rotating frame, ÛðtÞ ¼ expðiωdt

P
α ĉ

†
αĉαÞ, the Hamiltonian

Eq. (1) reads

Ĥ
ℏ
¼ ωxb̂

†b̂þ
X

α¼1;2

Δαĉ
†
αĉα

þ ðb̂† þ b̂Þ
X

α¼1;2

ðGxαĉ
†
α þ H:c:Þ; ð2Þ
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after a rotating wave approximation, valid for
ωd ≫ jGxj=4;ωx. Here Δα ≡ ωα − ωd, and the couplings
are renormalized to Gx1 ¼ Gx=ð2N Þ and Gx2 ¼ −χGx1. In
terms of the normal modes, the dissipators take the form
Lp½ρ̂� þLm½ρ̂� ¼ L12½ρ̂� þ

P
α¼1;2ðγαþLĉ†α

½ρ̂� þ γα−Lĉα ½ρ̂�Þ.
The L12 term describes an incoherent interaction which can
be neglected, under a rotating wave approximation, for
micromagnet radii R≲ 10 μm [24]. The corresponding rates
in the remaining terms are given by γ1ξ ¼ Γmξ þ χ2Γpξ and
γ2ξ ¼ χ2Γmξ þ Γpξ, with Γmξ ≡ γmðn̄m þ δξ−Þ=N 2 and
Γpξ ≡ γpðn̄p þ δξ−Þ=N 2. Here ξ ¼ þ;− and δξξ0 is a
Kronecker delta. We define the linewidth of the mode ĉ1
[ĉ2] as γ1 ≡ ðγm þ γpχ

2Þ=N 2 [γ2 ≡ ðγmχ2 þ γpÞ=N 2].
Note that in terms of the normal modes, the center of mass
is coupled to two independent, largely detuned modes, as
Δ1 − Δ2 ¼ 2ðΔ2 þ 4g2Þ1=2 ≫ ωx for typical mechanical
frequencies. Tomaximize the acoustomechanical interaction,
themagnetic field parametersB0 andωd are adjusted such that
mode ĉ2 is in resonance with the center-of-mass motion
(Δ2 ¼ ωx) and χ ¼ 10−2, so that ĉ2 is mainly (≈99.99%)
acoustic [40]. The associated decrease in the coupling
between ĉ2 and the center of mass, Gx2 ∝ χ, can be
independently compensated by increasing the field gradient
bg. In this way, we form a quasi-two-mode acoustomechan-
ical systemwhere themechanical motion of themicromagnet
is coupled to the mainly (99.99%) acoustic ĉ2 mode, which
plays the role of the electromagnetic mode in optome-
chanics [6].
In order to explore the physical regimes that our

proposed acoustomechanical system can achieve, we plot
the ratio jGx2j=γ2 ∝ bg in Fig. 2(a) (left axis), the ratio
ωx=γ2 in Fig. 2(a) (right axis), and the cooperativity C≡
4G2

x2=ðγ2γxÞ ∝ b2g in Fig. 2(b), as a function of the acoustic
quality factor Qp and for three values of the micromagnet
radius R. Hereafter, we consider the lowest-order (S121)
phonon, material parameters for YIG, and fix ωx ¼ 2π ×
200 kHz and γm ¼ 2π × 1 MHz [41]. All the quantities in
Fig. 2 increase initially as a function ofQp, as the linewidth
γ2 ≈ γmχ

2 þ ωp=Qp is reduced, and saturate for large Qp

where γ2 → χ2γm becomes magnon-limited. The system
resides both in the resolved-sideband regime (ωx > γ2) and
the high-cooperativity (C > 1) regime even at moderate
Qp ∼ 106 and magnetic field gradients bg ∼ 5 T=m. The
strong-coupling regime (jGx2j > γ2) can also be attained
for a wide range of Qp and feasible gradients
bg ∼ 103–104 T=m. Moreover, the system can reach the
strong quantum cooperativity regime C=ðn̄xn̄pÞ > 1

allowing for coherent quantum state transfer between
mechanical motion and acoustic phonons [6]. Indeed, at
cryogenic temperatures (Te;j ¼ 100 mK), the product
n̄xn̄p < 104 and C=ðn̄xn̄pÞ > 1 can be achieved for bg ≳
103 T=m and Qp ≳ 106 for all radii in Fig. 2. At room
temperature, attaining such a regime is more challenging

and only feasible for small R at gradients ≳104 T=m.
Figure 2 highlights that our acoustomechanical system can
be tuned into the resolved-sideband, the high-cooperativity,
and either the weak- or the strong-coupling regime with
experimentally accessible parameters. This versatility ena-
bles a range of applications, which we will discuss in the
following.
Efficient center-of-mass cooling can be achieved in the

resolved-sideband, high-cooperativity, and weak-coupling
regime [42–44]. By solving the quadratic master equation
exactly, the steady-state occupation of the center of mass
hb̂†b̂iss can be evaluated. Figure 3(a) [Fig. 3(b)] shows
hb̂†b̂iss for R ¼ 100 nm [R ¼ 1 μm] at Qx ¼ 108 and
different field gradients bg, for both a room temperature
environment (Te;j ¼ 300 K, solid lines) and cryogenic
conditions (Te;j ¼ 100 mK, dashed lines). For small acous-
tic quality factors, the cooling is inefficient as C < 1 (see
Fig. 2). When Qp increases above a certain value (which
depends on R and bg, see Fig. 2), the C > 1 regime is
reached and center-of-mass cooling is observed. Notice that
ground-state cooling, hb̂†b̂iss < 1, is achieved for both
micromagnet sizes at Te;j ¼ 100 mK. For sufficiently high
Qp, however, the cooling becomes less efficient as the
system enters the strong-coupling regime [42–44]. The
lowest occupations in both panels of Fig. 3, i.e., the minima
of the green dashed lines, correspond to parameters at
which the mechanical sidebands are very well resolved
(ωx=γ2 ∼ 102, see Fig. 2), and thus cooling is limited by

(a)

(b)

FIG. 2. Relevant acoustomechanical parameters for Qx ¼ 108

versus acoustic quality factor Qp. The dependence with the field
gradient bg has been factored out explicitly, so the figures are bg
independent. (a) Coupling (left) and mechanical frequency (right)
normalized to linewidth of mode ĉ2. (b) Single-phonon cooper-
ativity C≡ 4G2

x2=γ2γx. In both panels we fix χ ¼ 10−2 by
applying an external static field B0 ≈ f5.4; 0.45; 0.018g T for
R ¼ f10; 102; 103g nm, respectively.
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other factors. For R ¼ 100 nm, the lowest occupation
hb̂†b̂iss;min ≈ 0.014 at bg ¼ 2 × 103 T=m is cooperativity-
limited. It can, thus, be reduced by increasing either bg
orQx. In contrast, for R ¼ 1 μm, hb̂†b̂iss;min ≈ 0.89 at bg ¼
2 × 103 T=m is limited by the entropy of the acoustic
phonon bath through the phonon occupation n̄p [45], which
increases with R due to the reduction of the acoustic
frequency. Note that further cooling is still possible in this
case by tuning the Kittel mode close to resonance with a
higher order (lower entropy) acoustic phonon [24]; see
Fig. 1(c). As evidenced by these results, coupling the
micromagnet motion to its built-in internal resonators (i.e.,
phonons) allows for cavityless cooling of the motion, an
especially promising prospect for levitated micromagnets
for which neither optical cooling nor microwave optome-
chanical cooling are efficient, due to absorption and weak
coupling rates, respectively.
The strong and tunable acoustomechanical interaction

also allows us to probe the acoustic phonons by measuring
the mechanical displacement of the center of mass. Figure 4
shows the power spectral density of the center-of-mass
motion, SxxðωÞ≡ ð2πÞ−1 R∞

−∞ dτhx̂ð0Þx̂ðτÞisseiωτ, where
x̂≡ x0ðb̂† þ b̂Þ, for R ¼ 100 nm and moderate quality
factors Qx ¼ 105 and Qp ¼ 106. For these parameters,
ωx=γ2 ≈ 10 and 2jGx2j=γ2 ≈ 10−4bg [see Fig. 2(a)]. We
distinguish the three possible regimes in Fig. 4, namely,
the zero-coupling regime (b ¼ 0), where the single peak
at ω ¼ ωx and width γx ≈ 2π × 2 Hz indicates a freely
evolving center-of-mass motion, the weak-coupling regime

(bg ¼ 2 × 103 T=m), characterized by a reduced peak, i.e.,
by cooling of the mechanical motion, and the strong-
coupling regime (bg ¼ 2 × 104 T=m), where the peak splits
into two [46]. The latter splitting is induced exclusively by
the mode ĉ2, i.e., by acoustic phonons, as evidenced by the
two insets of Fig. 4. In the left-hand inset we observe how
the signal increases with the acoustic quality factor, up to
the magnon-limited saturation point (Qp ∼ 109) (see also
Fig. 2). The right-hand inset shows that the mode splitting
is well approximated by the function 2jGx2ðbgÞj. The
strong-coupling crossover 2jGx2ðbgÞj=γ2 ¼ 1 is at bg ≈
104 T=m for the chosen parameters. Measuring the peak
splitting due to the center of mass hybridizing with the
acoustic mode requires to resolve the thermal motion of the
center-of-mass mode. According to the results in Fig. 4, this
lies well within the sensitivity range of most state-of-the-art
ultrasensitive micromechanical sensors [36,47–51], which
can even resolve motion on the quantum level [35,52,53].
Thus, the acoustic-induced mode splitting is experimentally
measurable. Let us finally emphasize that, in all the above
results, the internal temperature increase of the micro-
magnet remains low in spite of the magnetic driving, as
such driving is largely detuned with respect to the magnon
frequency [24].
In conclusion, we have shown that the center of mass of a

micromagnet in a harmonic potential can be coupled, in a
strong and tunable way, to one of its internal acoustic
phononic modes. The coupling mechanism can be con-
trolled by external magnetic fields and both ground-state
cooling and the strong quantum coupling regime can be
achieved. Such a quantum acoustomechanical system
opens many possibilities for further research: (i) exploring
the strong quantum cooperativity regime to use an internal

(a)

(b)

FIG. 3. Steady-state center-of-mass occupation (Qx ¼ 108)
versus acoustic quality factor, for R ¼ 100 nm (a) and R ¼
1 μm (b) and three values of the magnetic gradient bg. Solid and
dashed lines indicate results at room (Te;j ¼ 300 K) and cryo-
genic temperatures (Te;j ¼ 100 mK), respectively. The shaded

area indicates the ground-state cooling region hb̂†b̂iss < 1. The
right-hand axes indicate the steady-state center-of-mass temper-
ature kBTx ≈ ℏωxhb̂†b̂iss (ωx ¼ 2π × 200 kHz).

FIG. 4. Power spectral density SxxðωÞ, for Qp ¼ 106,
Qx ¼ 105, R ¼ 100 nm, and Te;j ¼ 300 K, at three different
values of the field gradient bg. Left inset: Peak splitting at
bg ¼ 104 T=m, for different acoustic quality factors Qp. Right
inset: Normalized power spectral density as a function of bg and
detuning ω − ωx. The dashed lines indicate the function
�Gx2ðbgÞ. Strong coupling is reached at bg ≈ 104 T=m.
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acoustic phonon as a quantum memory [39], (ii) preparing
the micromagnet in a state where different acoustic modes
have different temperatures and probe how they equilibrate
[17], and (iii) exploring the regimes where the potentially
strong nonlinear magnetoelastic interactions [24] might
become relevant, to generate a nonlinear hybrid magnon-
phonon mode. This mode can act as a qubit and can thus be
used to prepare the center of mass in a non-Gaussian
quantum state. Last but not least, in the context of levitated
nanoparticles, our work highlights the important fact that
nanoparticles are not point objects with only external
degrees of freedom, but complex particles with internal
degrees of freedom that can be harnessed in the quantum
regime.
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