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First Glimpse of the N =82 Shell Closure below Z =50 from Masses of Neutron-Rich
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V. Manea ,]’2’3’* J. Karthein ,1’2’+ D. Atanasov,“‘ M. Bender ,5 K. Blaum ,2 T.E. Cocolios,3 S. Eliseev,2 A. Herlert ,6
J.D. Holt,7 W.J. Huamg,g‘9 Yu. A. Litvinov ,9 D. Lunney ,8 J. Menéndez,'o’” M. Mougeot,g’; D. Neidhelrr,9
L. Schweikhard,'"” A. Schwenk,"'** J. Simonis,"'"*'* A. Welker®,"* E. Wienholtz,"'*! and K. Zuber’
'CERN, 1211 Geneva 23, Switzerland
*Max-Planck-Institut fiir Kernphysik, 69117 Heidelberg, Germany
3 Instituut voor Kern—en Stralingsfysica, Katholieke Universiteit Leuven, B-3001 Leuven, Belgium
“Technische Universitiit Dresden, 01069 Dresden, Germany
>IP2I Lyon, CNRS/IN2P3, Université de Lyon, Université Claude Bernard Lyon 1, F-69622 Villeurbanne, France
°FAIR GmbH, 64291 Darmstadt, Germany
"TRIUMF, 4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
8CSNSM—IN2P3—CNRS, Université Paris-Sud, 91406 Orsay, France
GSI Helmholtzzentrum fiir Schwerionenforschung GmbH, 64291 Darmstadt, Germany
OCenter for Nuclear Study, The University of Tokyo, 113-0033 Tokyo, Japan
"Department de Fisica Quantica i Astrofisica, Universitat de Barcelona, 08028 Barcelona, Spain
P Institut fiir Physik, Universitit Greifswald, 17487 Greifswald, Germany
Bnstitut fiir Kernphysik, Technische Universitdt Darmstadt, 64289 Darmstadt, Germany
“ExtreMe Matter Institute EMMI, GSI Helmholizzentrum fiir Schwerionenforschung GmbH,

64291 Darmstadt, Germany
Bnstitut fiir Kernphysik and PRISMA Cluster of Excellence, Johannes Gutenberg-Universitdit, 55099 Mainz, Germany

® (Received 13 September 2019; accepted 7 January 2020; published 5 March 2020)

We probe the N = 82 nuclear shell closure by mass measurements of neutron-rich cadmium isotopes
with the ISOLTRAP spectrometer at ISOLDE-CERN. The new mass of '32Cd offers the first value of the
N = 82, two-neutron shell gap below Z = 50 and confirms the phenomenon of mutually enhanced
magicity at '3?Sn. Using the recently implemented phase-imaging ion-cyclotron-resonance method, the
ordering of the low-lying isomers in '*°Cd and their energies are determined. The new experimental
findings are used to test large-scale shell-model, mean-field, and beyond-mean-field calculations, as well as
the ab initio valence-space in-medium similarity renormalization group.
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The so-called magic numbers of protons and neutrons
are associated with large energy gaps in the effective single-
particle spectrum of the nuclear mean field [1], revealing
shell closures. As such, they are intimately connected to the
nuclear interaction and represent essential benchmarks for
nuclear models.

Experiments with light radioactive beams have shown
that shell closures at N = 8, 20, and 28 are substantially
weakened when the number of protons in the nuclear
system is reduced (see [2,3] for a review). New but weaker
shell closures have also been found, e.g., N = 32 and 34
[4=7]. In the shell model, this evolution results from the
interplay between the monopole part of the valence-space
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nucleon-nucleon interaction that determines the single-
particle spectrum and multipole forces that induce corre-
lations [8]. Starting from realistic nuclear forces, the study
of closed-shell nuclei provides benchmarks for microscopic
calculations of valence-space Hamiltonians, with their
many-body contributions [9—13]. Despite extensive work,
significantly less is known for heavier nuclei, in particular
for the magic N = 82.

The doubly magic nature of '3?Sn (with 50 protons and
82 neutrons) was reconfirmed recently [14,15]. But below
Z = 50 the orbitals occupied by the Fermi-level protons
change, as does the proton-neutron interaction, which
drives shell evolution. This means that without data for
nuclides with Z < 50 and N = 82, any predictions for the
N = 82 shell gap are rather uncertain. While decay-
spectroscopy [16—18], laser-spectroscopy [19], and mass-
spectrometry [20,21] studies have been performed for the
neutron-rich cadmium isotopes, the energies of the low-
lying isomers in '>°Cd and the N = 82 two-neutron shell
gap remain unknown.

Published by the American Physical Society
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The A ~ 130 r-process abundance peak has long been
considered an indication of a persistent N = 82 shell gap in
various models. However, recent studies of r-process
nucleosynthesis have underlined the importance of fission
recycling in certain scenarios, in which the A = 130
abundance peak is primarily determined by the fission-
fragment distribution of r-process actinides [22,23].

In this Letter, we present the first direct determination of
the N = 82 shell gap for Z < 50 with mass measurements
of exotic cadmium isotopes and isomers between '>*Cd and
132Cd. We exploit all mass-measurement techniques of the
ISOLTRAP spectrometer, including the phase-imaging ion-
cyclotron-resonance (PI-ICR) method [24-26]. The data
are interpreted in comparison to the large-scale shell model
and to new calculations made with a beyond-mean-field
(BMF) approach [27,28], as well as the ab initio valence-
space in-medium similarity renormalization group (VS-
IMSRG) [12,29-33].

The cadmium isotopes were produced at CERN'’s
ISOLDE facility [34] by neutron-induced fission in a
uranium-carbide target. The neutrons were produced by
1.4-GeV  protons accelerated by CERN’s Proton
Synchrotron Booster and impinging on a tungsten rod,
which reduced contaminants from proton-induced reactions
[35]. The neutral products diffused from the ~2000 °C target
into a hot tantalum cavity where the resonance-ionization
laser ion source [36] was used to produce singly charged
cadmium ions. A cold quartz line [37] greatly suppressed
surface ionized cesium and barium contaminants.

The beam was accelerated to 50 keV, mass separated by
the ISOLDE High Resolution Separator and transported to
ISOLTRAP for accumulation in a segmented, linear radio-
frequency quadrupole cooler and buncher [38]. The ion
bunch was then injected into the multireflection time-of-
flight mass spectrometer (MR-TOF MS) [39] where the
cadmium ions were separated from contaminants with a
resolving power of ~10°. The separated ions were either
detected using a secondary electron multiplier for mass
measurements, or purified [40] and transported to a tandem
Penning-trap system, composed of a preparation trap for
beam cooling and further purification [41,42] and a
precision trap for measurements.

In this Letter, the masses of 131132Cd were determined
with the MR-TOF MS (see Fig. 1) using a two-parameter
calibration formula and hence requiring two reference
measurements, as described in [5]. Its short measurement
time of only about 27 ms and direct ion counting made it
the method of choice for the most exotic isotopes.
Considering only singly charged ions, the mass m; , of
the ion of interest is related to the masses m;; and m;,
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FIG. 1. MR-TOF spectrum (after 800 revolutions) of '3Cd*

along with isobaric ions ('3?Ba* and '3’Cs™), with fits (in red) to
Gaussian line shapes.

m; ., m; 1, and m; ,, respectively, with m; ; an isobar of the

ion of interest.

The masses of the other studied cadmium isotopes were
determined with the precision Penning trap, allowing
typically a higher precision and resolving power than the
MR-TOF MS, by measuring their cyclotron frequency (as
singly charged ions) in the trap, v, = ¢B/(2zm; ) (Where
q is in our case the elementary charge and B is the trap’s
magnetic-field induction) [43]. The atomic mass m, can
then be determined as m, = ryep (M — m,) + m,, where
m, is the electron mass and 7y = Verer/Vey 1S the
measured cyclotron-frequency ratio between a singly
charged reference ion of atomic mass m,; and the ion
of interest. The binding energy of the electron, neglected in
the atomic-mass formula, is orders of magnitude smaller
than the statistical uncertainty.

Penning-trap measurements of '24126.128.131Cq were per-
formed with the time-of-flight ion-cyclotron-resonance
(TOF-ICR) method [44], including Ramsey-type excita-
tions [45,46].

For 27129Cd the beam was a mixture of ground and
isomeric state (/ = 3/2" and J = 11/27) which in a prior
attempt could not be separated by a long-excitation TOF-
ICR measurement [20] due to the short half-lives. In this
Letter, we used instead the recently developed PI-ICR
method [24,25], by which a radial frequency is determined
from the phase “accumulated” by the circular ion motion in
the trap in a given time 7, using its projection on a position-
sensitive microchannel-plate detector (MCP). In PI-ICR MS
one performs three ion-position measurements: (1) the
center of the radial ion trajectory by ejection without
preparing a radial motion, (2) for ions prepared on a
cyclotron orbit (at frequency v, ) after evolving for #,.,
(3) for ions prepared on a magnetron orbit (at frequency v_),
after evolving for the same ¢,... The cyclotron frequency is
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FIG. 2. PI-ICR ion projection image of '?’Cd* with center ion
spot measured separately (in black) and the 11/27 (blue) and
3/2" states (red) separated by the marked angle after 106-ms
phase accumulation at the modified cyclotron frequency.

then given by v, = [2z(n, 4+ n_) + ¢|/(2nt,.), where n
and n_ are the number of integer rotations performed by the
ions in steps (2) and (3), respectively, while ¢ is the angle
between the ion positions measured in the two steps [24,25].

In the second step of the PI-ICR measurement, a
resolving power of about 2 x 10° was achieved in only
106 ms, allowing a clear separation of the two states as
illustrated in Fig. 2 for '2°Cd*. Their individual masses
could thus be determined.

The experimental results of this work are summarized in
Table I. During the '**Cd measurements the yield of (stable)
132Ba+t remained constant, while a gradual increase in the
yield of (radioactive) '**Cs* was observed. The data set for
132Cd was thus split, depending on which isobaric reference
dominated, resulting in two independent Cror values. In

TABLE L.

this case, as well as for 13'Cd, the weighted averages of the
new mass-excess values are used for the figures.

The analysis of the TOF-ICR measurements followed the
procedure in [49]. For the MR-TOF MS spectra, Gaussian
distributions were fit to the data (double-Gaussian for the
132Ba*/132Cs* double peak) by the binned maximum-
likelihood method. When statistically significant, shifts
of the Crop values from changing the fit range, data binning
and number of ions simultaneously stored in the MR-TOF
MS were included in the total uncertainty.

For the PI-ICR measurements, the unbinned maximum-
likelihood fit of the ion-spot positions was performed using
2D Gaussian distributions. The effect of the number of ions
simultaneously stored in the trap was studied and, for the
analysed data set, was within statistical uncertainties. The
mass-dependent shift and systematic uncertainty from [49]
were quadratically added to the total uncertainty.

The spin assignments for the measured states in '2’Cd and
129Cd are based on the fact that the high-spin isomers were
systematically produced with higher yields, corroborated by
a laser-spectroscopy study of cadmium isotopes performed
at ISOLDE [19] with the same production mechanism,
where the yield ratios were determined for '27:'2°Cd. We
conclude that the excited 11/2 state in '>’Cd becomes the
ground state in 'Cd. The 283(12)-keV excitation energy
obtained for '*’Cd agrees with the TITAN result using
highly charged ions [21]. The 343(8)-keV excitation energy
of the 3/2% state in '*°Cd is a new value.

In a simple picture, the 3/2% and 11/2~ states in '°Cd
are formed by the odd neutron occupying the ds/, and hy; »
orbitals, respectively, and allow probing the evolution of
the two states with proton number. This is shown in Fig. 3,
where neutron binding energies, calculated as in [2] for the
low-lying states in the even Z, N =81 and N =83
isotones are plotted as a function of Z. For Z = 48 they
are obtained from this Letter. One notices the larger slope of

Frequency ratio (r = v, t/v.), time-of-flight ratio (Ctor) and mass excess of the cadmium isotopes measured in this work.

Mass excesses from the literature ([21] for '2’Cd, [20] for '*°Cd and AME2016 [47] for the rest) are given as well (# indicates
extrapolated values). The masses of the reference ions used in the evaluation are from AME2016 [47]. Experimental half-lives are taken
from [48] (and [18] for '?’Cd). The yields, where available, are order-of-magnitude estimates of ion intensities on the ISOLDE central
beam line. Values between parentheses are total (statistical plus systematic) uncertainties.

Mass excess (keV)

A J™  Half-life (s) Yield (Ions/s) Method References Ratio r or Crop This Letter Literature

124 0O 1.25(2) TOF-ICR 133Cs* r=10.9323743186(432) —-76692.4(5.4) —76701.7(3.0)

126 0O 0.513(6) TOF-ICR 133cst r=10.947458558 1(503) —72249.8(6.2) —72256.8(2.5)

127 3/2* 0.45(182) 5 x 10* PI-ICR 133Cst r=10.9550111122(922) —68737(11) —68743.4(5.6)
11/2=  0.36(4) 1 x10° r=0.9550133972(435) —68453.8(5.4) —68460.1(4.7)

128 0Ot 0.246(2) 8 x 10* TOF-ICR 133Cgt r=0.962547502(114) —67225(14) —67242(7)

129 11/2=  0.152(6) 1 x 10* PI-ICR 133Cs+ r=09701048175(432) —63122.1(5.4) —63058(17)
3/27  0.147(3) 5% 103 r=0.970107 588 6(450) —62779.1(5.6)

131 7/2=  0.098(2) 3 x 10? TOF-ICR 133cgt r=10.985217426(252) —-55167(31) —55220(100)

MR-TOF MS BICst, 3Cst Crop = 0.4823166(126) —55238(24)
132 0t 0.082(4) 5 MR-TOF MS '3?Ba*, '3Cs* Crop = 0.4592156(773) —50499(72) -50260
132Cs+, 133Cs™ Crop = 0.460420(118)  —50386(110)
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FIG. 3. Neutron binding energies of the low-lying nuclear states
of the N=81 (J*=1/2%,3/2",11/27) and N =383

(J*=17/27) isotones. Experimental data are taken from
[48,50] and this Letter (open symbols).

the 11/27 states, which changes more abruptly for Z < 50,
suggesting a stronger, attractive monopole proton-neutron
interaction for the high-spin state.

Figure 4 shows the difference in energy between the
3/2% and 11/2 states for the odd cadmium isotopes.
Shell-model calculations assuming a closed '3*Sn (jj45pn
[51,52] and NA-14 [16-18,53]) or allowing cross-shell
excitations (EPQQM [54]) predict the 11/2~ state to
become the ground state in '*°Cd. For EPQQM, obtaining
the correct prediction required enhancing the monopole
interaction between the zgy, and vhy;, orbits [S5].

The mass of '¥°Cd allows addressing a broader range of
models via the N = 82 two-neutron shell gap A,,(Z,N) =
Son(Z,N) = S5,(Z, N +2) (where S,, is the two-neutron
separation energy), a quantity involving only even nuclei
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FIG. 4. Energy difference between the J =11/2" and J =
3/2" states in the odd cadmium isotopes. Experimental data
from [48] and this Letter are compared to theoretical calcu-
lations (EPQQM [54], NA-14 [18,53], jj45pn [51] using
NUSHELLX [52]).

and the first such value below the doubly magic '32Sn. This
gap is shown as a function of Z in Fig. 5, with the new data
(full circle) revealing a peak at the proton magic number
Z =50. This phenomenon called “mutually enhanced
magicity” [56,57] is known from other doubly magic
nuclei and was explained by a BMF calculation using
the SLy4 Skyrme interaction, within a symmetry-restored
generator coordinate method (GCM) [27,28]. In this Letter,
we show that this enhancement manifests also for '32Sn.
The BMF calculations were extended to Z =46 and
describe the peak at Z = 50. By contrast, results obtained
with SLy4 just at the mean-field level (SLy4-MF) fail to
reproduce the peak. It is by BMF correlations that the
N = 80, 84 isotones gain binding with respect to N = 82,
lowering the empirical shell gap, while for Z = 50 the
closed proton shell maintains the high gap value. The same
failure to produce the peak in more basic mean-field
calculations is also found when using other interactions.
Figure 5 illustrates this for the nonrelativistic HFB31 [58]
and UNEDFO [59] Skyrme interactions and the relativistic
DD-MES$ [60]. Calculations with HFB31 include a collec-
tive-energy correction for BMF effects, which slightly
enhances A,, around Z = 50. While the peak is qualita-
tively described by BMF correlations, the size of the drop
of A,, below Z < 50 is not reproduced by any of these
calculations.

We also present VS-IMSRG calculations of ground- and
two-neutron separation energies of cadmium, tin, and
tellurium isotopes across the N = 82 shell gap. For details
on the VS-IMSRG decoupling to derive the valence-space
Hamiltonian, we refer to Refs. [12,29-33]. When this
ab initio valence-space Hamiltonian is diagonalized (here
with the shell-model code ANTOINE [8]) some subset of
eigenvalues of the full Hamiltonian should be reproduced
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FIG. 5. Experimental two-neutron shell gap of the N = 82

isotones from the AME2016 [47] and this Letter compared to

predictions of different calculations (for details, see text). The

dashed line corresponds to the VS-IMSRG results shifted to
match the Z = 50 value.
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when no IMSRG approximations are made. In this Letter,
we use the IMSRG(2) approximation, where all induced
operators are truncated at the two-body level, typically
giving binding energies closer than 1% to full-space
ab initio results [12]. We begin from the 1.8/2.0(EM)
chiral interaction of Refs. [61,62], used successfully
throughout the medium- to heavy-mass region
[13,63,64]. For heavier systems, achieving convergence
with respect to the Ej5,. cut on 3N matrix elements is
however a key limitation. The resulting A,, values are
presented in Fig. 5. The calculations overestimate data by
almost 3 MeV, but are not fully converged with respect to
the 3N matrix elements included, here up to E3 . = 18
excitations in a harmonic oscillator basis. In contrast, the
relative trend of A,,, which is safely converged up to
~50 keV, is well described. This is illustrated by the
dashed lines in Fig. 5, which show the IMSRG results
translated to match the A,, value at Z = 50.

In summary, we have measured the masses of neutron-
rich cadmium isotopes and isomers across the N = 82 shell
closure. The PI-ICR technique allowed establishing the
inversion of the 11/2~ and 3/27 states in '*°Cd, showing
that the £, , neutron orbital is key for the evolution of the
N = 82 shell gap towards Z = 40. The trend of the N = 82
shell gap was determined below Z = 50 with the mass of
132Cd, showing a large drop, which confirms the mutually
enhanced magicity of '32Sn. A BMF model reproduces the
effect, but underestimates its size, whereas the VS-IMSRG
approach shows an offset to experiment, but describes it
qualitatively.
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