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We report a calculation of the perturbative matching coefficients for the transverse-momentum-
dependent parton distribution functions for quark at the next-to-next-to-next-to-leading order in QCD,
which involves calculation of nonstandard Feynman integrals with rapidity divergence. We introduce a set
of generalized integration-by-parts equations, which allows an algorithmic evaluation of such integrals
using the machinery of modern Feynman integral calculation.
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Introduction.—Transverse-momentum-dependent (TMD)
parton distribution functions (PDFs) generalize the concept
of PDFs by allowing the dependence on the intrinsic
transverse momentum of struck parton, beside the conven-
tional longitudinal momentum fraction. By probing the
intrinsic confined transverse motion of parton inside the
nucleon, TMD PDFs allow reconstruction of the 3D picture
of the nucleon structure, as well as probing the parton orbital
motion and the spin-orbit correlations between parton and
nucleon. The possibility of precision measurement of TMD
PDFs in both pp and ep scattering also probes fundamental
aspects of QCD, such as gauge invariance and (non)
universality. For these reasons, TMD PDFs play an increas-
ingly central role in QCD theory and phenomenology in
high energy collisions [1,2]. In light of the unprecedented
precision of the future electron ion collider in TMD
measurements [3], perturbative knowledge about TMD
PDFs at the highest available order is desirable and is the
main subject of this Letter.
The theoretical framework of TMD PDFs is substantially

more complicated than the conventional PDFs, which is

partly reflected by the existence of several different for-
mulations of TMD factorization in the literature [1,4–14]
(see Refs. [15,16] for a discussion of the different for-
mulations). In this Letter, we adopt the rapidity renorm-
alization group formalism of Refs. [14,17], which is based
on soft-collinear effective theory (SCET) [18–22]. In this
formalism, TMD factorization involves both TMD beam
function B and TMD soft function S. Schematically, for
Drell-Yan production at low q⊥,

dσ
d2q⊥

∼ σ0HðQÞ
Z

d2b⊥eib⊥·q⊥B ⊗ BS; ð1Þ

where σ0 is the born cross section for the Drell-Yan
process, HðQÞ is the quark electromagnetic form factor,
and the convolution is in the longitudinal momentum
fraction. The quark TMD beam function can be written
as an operator matrix element in a hadron state with
momenta P,

Bq=Nðz; b⊥Þ ¼
Z

db−
4π

e−izb
−Pþ=2hNðPÞjχ̄nð0; b−; b⊥Þ

=̄n
2
χnð0ÞjNðPÞi; ð2Þ

where χn ¼ W†
nξn is the gauge invariant collinear quark

field [23] in SCET, constructed from collinear quark field
ξn and path-ordered collinear Wilson line WnðxÞ ¼
P exp½ig R 0

−∞ dsn̄ · Anðxþ n̄sÞ� in some null direction n ¼
ðnþ; n−; n⊥Þ ¼ ð2; 0; 0⊥Þ and n̄ ¼ ð0; 2; 0⊥Þ. b⊥ plays the

role of a Fourier conjugate of the transverse momentum of
the struck quark. The TMD soft function is a vacuum
matrix element of time-ordered and anti-time-ordered soft
Wilson lines,

Sðb⊥Þ ¼
1

Nc
Trh0jT ½S†n̄Snð0; 0; b⊥Þ�T̄ ½S†nSn̄ð0Þ�j0i; ð3Þ

where SnðxÞ ¼ P exp½ig R 0
−∞ dsn · Asðxþ snÞ�.

Similar to PDFs, the TMD beam function in Eq. (2) is
intrinsically nonperturbative. At leading twist it admits a
light-cone operator product expansion onto collinear PDFs,
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Bq=Nðz; b⊥Þ ¼
X
i

Z
1

z

dξ
ξ
Iqiðξ; b⊥Þϕi=Nðz=ξÞ

þOðjb2⊥jΛ2
QCDÞ; ð4Þ

where, in principle, the matching coefficients Iqi are
perturbatively calculable. The main complication is that
the operator matrix element in Eqs. (2) and (3) are not well
defined even within dimensional regularization. They
suffer from the so-called rapidity divergence, which orig-
inates from gluon emission at infinite rapidity in the
backward direction to the struck parton. Several regulators
proposed to cure the rapidity divergence in TMD PDFs
exist in the literature [1,7,9,12,14,24–28], which allow one
to calculate the matching coefficients in QCD to next-to-
leading order (NLO) [1,7,9,12,14,29,30] and, relatively
recently, to next-to-next-to-leading order (NNLO) [31–38].
These results provide a stringent test to the TMD factori-
zation and facilitate some of the most precise theoretical
predictions at the LHC [39–43].
In this Letter, we shall present for the first time a

calculation of the matching coefficients for quark TMD
beam function at the next-to-next-to-next-to-leading order
(N3LO) within the exponential regularization scheme [27]
in a completely analytic form. We also provide results for
the regulator-independent TMD PDFs, by combining the
beam function with the N3LO TMD soft function [44]. Our
calculation contains all the color structures and all the
partonic channels and represents a major step toward
precision TMD physics. To facilitate this calculation,
we introduce a set of generalized integration-by-parts

equations that allows an algorithmic evaluation of rapidity
divergent integrals, using the powerful machinery of
modern Feynman diagram calculation, which shall be
explained in the next section.
The method.—Since the matching coefficients can be

calculated in short-distance perturbation theory, we can use
asymptotic quark and gluon states instead of the hadron
state NðPÞ in Eq. (2). Furthermore, we can insert a
complete state of jXihXj, which also consists of asymptotic
quark and gluon states, between χ̄n and χn. This converts
the calculation of the perturbative TMD beam function to
the calculation of the semi-inclusive partonic cross section,

Bq=iðz; b⊥Þ ¼
X
L¼0

X
nþm¼L

Bðn;mÞ
q=i ðz; b⊥Þ; ð5Þ

where Bðn;mÞ
q=i ðz; b⊥Þ represents an n-loop, m-real emission

contribution for the semi-inclusive subprocess i → qþ X
at Oðαnþm

s Þ,

Bðn;mÞ
q=i ðz; b⊥Þ ¼

Z
dd−2K̃⊥
jK̃2⊥j−ϵ

e−ib⊥·K̃⊥B̃ðn;mÞ
q=i ðz; K̃⊥Þ; ð6Þ

with d ¼ 4 − 2ϵ the space-time dimension. We have sup-
pressed the renormalization scale μ and rapidity scale ν in

the argument for simplicity. The function B̃ðn;mÞ
q=i ðz; K̃⊥Þ has

simple power and logarithmic dependence on K̃⊥, which
can be integrated easily [36,37]. The function B̃ðn;mÞ

q=i ðz; K̃⊥Þ
can be calculated as

B̃ðn;mÞ
q=i ðz; K̃⊥Þ ¼

�
lim
τ→0

2
R
ddK

Vd−2
e−b0τ

P·K
Pþδ½Kþ − Pþð1 − zÞ� × δðK̃2⊥ − K2⊥Þμ2ϵðnþmÞYn

j¼0

R
ddlj

ð2πÞd
Ym
r¼0

R
ddkr

ð2πÞd−1 δþðk
2
rÞ

× δðdÞ
�
K −

Xm
r¼1

kr

�
jSpq←iðP; flg; fkgÞj2

�����
τ→1=ν

; ð7Þ

where e−b0τðP·K=PþÞ is the exponential regulator [27] in the
collinear sector [36]. jSpq←iðP; flg; fkgÞj2 is the spin and
color averaged squared splitting amplitudes for i → qþ X
with n loops (counting at the squared amplitude level) and
m real emission. Kμ is the total four momentum of X. b0 ¼
2e−2γE is a conventional factor, and Vd ¼ 2πd=2=Γðd=2Þ is
the volume of d sphere. It is easy to see from Eq. (7) that the
dependence on K̃⊥ only enters through lnðjK̃2⊥j=μ2Þ
or lnðjK̃2⊥j=ν2Þ. Note that K2⊥ ¼ K2 − K−Kþ ¼ K2−
K−Pþð1 − zÞ. Using reverse unitarity [45], the delta
functions in Eq. (7) can be considered as “cut” propagators.

Therefore, B̃ðn;mÞ
q=i ðz; K̃⊥Þ can be regarded as an (nþm)-

loop Feynman integral in the algebraic sense, if not for the
exponential regulator. The main new idea of this Letter is

the introduction of a set of generalized integration-by-parts
(IBPs) equation [46,47], which takes into account also the
exponential regularization factor in Eq. (7).
Specifically, the generalized IBPs equations can be

written as

0¼
Z

ddq
∂
∂qμ ½e

−b0τP·KPþFðfl̃gÞ�

¼
8<
:
R
ddqe−b0τ

P·K
Pþ
h
−b0τ

Pμ

Pþþ ∂
∂qμ

i
Fðfl̃gÞ; q¼K;

R
ddqe−b0τ

P·K
Pþ ∂

∂qμFðfl̃gÞ; q≠K;
ð8Þ

where Fðfl̃gÞ is some Feynman integrand, and fl̃g ¼
fl1; l2;…; ln; k1; k2;…; km−1; Kg is the set of integration
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momenta. Note that we have used the delta function in
Eq. (7) to kill one of the integration momenta km. We
generate the required IBPs equations in this way using in-
house Mathematica code and LITERED [48]. The obtained
IBPs equations and the integrals are exported to FIRE [49],
where all the integrals can be reduced to a set of master
integrals (MIs).
The main task in this Letter is to calculate Eq. (7) at three

loops, i.e.,mþ n ¼ 3. The contribution at this order can be
classified by the number of loops and the number of real
emission: triple-real (RRR), double-real single-virtual
(VRR), double-virtual single-real (VVR), and the square
of real-virtual [ðVRÞ2]. For the VVR part, we use the results
in Ref. [50], analytically continue them to a spacelike case,
and directly integrate over the single particle phase space.
The ðVRÞ2 part is relatively simple. we use the method
presented in Ref. [36] to handle this part.
The main challenge of this calculation is the VRR and

RRRparts. Representative cut Feynmandiagrams are shown
in Fig. 1. We generate the integrand for VRR and RRR in
QGRAF [51], with color-Dirac algebra and integrandmanipu-
lation aided by FORM [52], FEYNCALC [53], and APART [54].
Using the above mentioned new idea, we then pass the
integrand and the generalized IBPs equations to FIRE for
integral reduction. After exploring symmetry between
different integral families, we find about 900 MIs for
VRR and RRR in total. To solve these MIs, we use the
method of differential equations (DEs) [55–57].
Note that up until this stage we have kept the rapidity

regulator τ finite. The resulting MIs are functions of z and τ,
and DEs in z and τ can be constructed in the standard way.
The next step is to take the τ → 0 limit, as in Eq. (7). We do
so by expanding the DEs and the MIs around τ ¼ 0

consistently, but keeping the full functional dependence
on z. We write a MI fi as a double series in τ and ln τ,

fiðz; τ; ϵÞ ¼τ→0
X
j

X
k¼0

fðj;kÞi ðz; ϵÞτjlnkτ: ð9Þ

Note that for an individual diagram in the Feynman gauge,
the result is absent of powerlike singularity in τ. However,
application of the generalized IBPs leads to power diver-
gence for an individual MI. We found by observation that
only j ≥ −1 is needed in Eq. (9), by checking explicitly that
terms with j ¼ −2 and j ¼ −3 vanish. In principle, we can
also have terms like τϵ in the expansion. However, such
terms can be discarded, because we can always analytically
continue to a region where ϵ > 0, and take τ → 0, and then
take ϵ → 0. In practice, we have checked this by enlarging
the ansatz in Eq. (9) by multiplying with τ�nϵ for
n ¼ 0;…; 4. We found that, when substituting the MIs
into the integrand, the coefficients for n ¼ 1;…; 4 always
vanish for each diagram. Therefore, these terms are
spurious at the diagram level, and we discard them in
Eq. (9) to simplify our calculation. We then substitute the
double series in Eq. (9) into the system of DEs, which are
expanded in τ, but with full z dependence. By equating the
τj lnk τ coefficient in the DEs, we obtain a closed system of
DEs in z for fðj;kÞi . By considering the double series
expansion, the number of MIs are reduced to about 500
in total for VRR and RRR.
The system of DEs in z can now be solved by the

standard approach. They are most conveniently solved by
converting into the canonical form [57] by proper choice of
MIs [58–60]. For individual VRR or RRR, the alphabet
consists of five letters,

fz; 1 − z; 1þ z; 2 − z; z2 − zþ 1g: ð10Þ
The DEs can be solved order-by-order in ϵ easily in terms
of Goncharov polylogarithms. Remarkably, after summing
the VRR and RRR contributions, and substituting in the
boundary constants determined below, the latter two letters
drop out from the sum. Therefore, harmonic polylogar-
ithms (HPLs) [61] are sufficient to describe the final results.
To determine the boundary constants for the DEs, we

consider the threshold limit of the MIs, z → 1. Following
Ref. [36], we define the so-called fully differential beam
function [62],

B̂ðn;mÞ
q=i ðz; Kþ; K−; K⊥Þ ¼

Yn
j¼0

R
ddlj

ð2πÞd
Ym
r¼0

R
ddkr

ð2πÞd−1 δþðk
2
rÞ × δðdÞ

�
K −

Xm
r¼1

kr

�
μ2ϵðnþmÞjSpq←iðP; flg; fkgÞj2: ð11Þ

The original B̃ is simply obtained by integrating the K− component,

B̃ðn;mÞ
q=i ðz; K̃⊥Þ ¼

�
lim
τ→0

jK̃2⊥j−ϵ
Vd−2

Z
∞

0

dK−e−b0τ
P·K
Pþ · B̂ðn;mÞ

q=i ðz; Pþð1 − zÞ; K−; K̃⊥Þ
�����

τ→1=ν
: ð12Þ

FIG. 1. Representative cut diagram for the color
structure dABCdABC ¼ ðN2

c − 1ÞðN2
c − 4Þ=Nc from VRR (left)

and RRR (right).

PHYSICAL REVIEW LETTERS 124, 092001 (2020)

092001-3



The advantage of having the fully differential function is
that now the threshold limit can be taken at the integrand
level. For that purpose, we adopt the strategy of expansion
by region [63]. For RRR, z → 1 forces the leading region to
be Kμ → 0. VRR is more complicated. In addition to
Kμ → 0, we also need to consider the scaling in the loop
momentum, which can be either soft or collinear [64].
Ultimately, expansion by region relates all the boundary
constants to those computed for soft-virtual corrections to
Higgs production at N3LO. We have performed an inde-
pendent calculation for these constants and found agree-
ment with those in the literature [64–68].

The results.—We are ready to combine all the ingredients
and present the final results. The bare TMD beam function
computed in the last section contains poles in ϵ up to 1=ϵ6.
Using the known renormalization constant and the PDF
counterterms (which contain the famous three-loop split-
ting kernel [69,70]), we find that all the poles cancel, and
finite matching coefficients can be extracted. This provides
a stringent check to our calculation. For the convenience of
the reader, the relevant renormalization counterterms are
collected in the Supplemental Material [71]. We refer to
Refs. [36,37] for the detailed renormalization procedure.
The finite matching coefficient obeys the renormaliza-

tion group equation,

d
d ln μ

Iqiðz; b⊥; Pþ; μ; νÞ ¼ 2

�
Γcusp½αsðμÞ� ln

ν

zPþ þ γB½αsðμÞ�
�
Iqiðz; b⊥; Pþ; μ; νÞ

− 2
X
j

Iqjðz; b⊥; Pþ; μ; νÞ ⊗ Pjiðz; αsðμÞÞ; ð13Þ

where the anomalous dimension can be found in the Supplemental Material [71]. It also obeys the rapidity evolution
equation [14],

d
d ln ν

Iqiðz; b⊥; Pþ; μ; νÞ ¼ −2
�Z

b0=jb⊥j

μ

dμ̄
μ̄
Γcusp½αsðμ̄Þ� þ γR½αsðb0=jb⊥jÞ�

�
Iqiðz; b⊥; Pþ; μ; νÞ: ð14Þ

The new results of this Letter are the initial conditions
(coefficient functions) for these equations IijðzÞ ¼
I ijðz; b⊥; Pþ; μ ¼ b0=jb⊥j; ν ¼ zPþÞ. As mentioned be-
fore, the three-loop results can be written solely in terms of
HPLs, which we believe is quite remarkable. The full
results can be found, along with computer readable files, in
the Supplemental Material [71]. The TMD beam function
depends on the rapidity regulator being used. Rapidity-
regulator-independent TMD PDFs can be simply obtained
using [36,37]

fT;ijðz; b⊥; Pþ; μÞ ¼ I ijðz; b⊥; Pþ; μ; νÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sðb⊥; μ; νÞ

p
:

ð15Þ
The TMD soft function Sðb⊥; μ; νÞ is also known
to N3LO [44]. Therefore, quark TMD PDFs can
also be extracted to this order, see the Supplemental
Material [71].
It is interesting to consider the asymptotic limit of the

coefficient functions. In the threshold limit, we find the
nonvanishing component to be

Ið2Þqq ¼ 1

ð1−zÞþ

��
28ζ3−

808

27

�
CACFþ

224

27
CFNfTF

�
;

Ið3Þqq ¼ 1

ð1−zÞþ

��
−
128ζ3
9

−
7424

729

�
CFN2

fT
2
Fþ

�
−
1648ζ2
81

−
1808ζ3
27

þ40ζ4
3

þ125252

729

�
CACFNfTF

þ
�
−
176

3
ζ3ζ2þ

6392ζ2
81

þ12328ζ3
27

þ154ζ4
3

−192ζ5−
297029

729

�
C2
ACFþ

�
−
608ζ3
9

−32ζ4þ
3422

27

�
C2
FNfTF

�
; ð16Þ

where IðnÞij is the expansion coefficient of ½αs=ð4πÞ�n. One
can also identify the coefficient with the rapidity anomalous
dimension

Ið2Þqq ðzÞ ¼ 2γR1
ð1 − zÞþ

; Ið3Þqq ðzÞ ¼ 2γR2
ð1 − zÞþ

; ð17Þ

where γR
1ð2Þ are the two(three)-loop rapidity anoma-

lous dimension [44,79]. This result was conjectured in
Ref. [35] and was understood using joint qT and threshold
resummation [80] (see also Ref. [81]). This provides
another check to our calculation.
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We can also consider the high energy limit z → 0, which is closely related to small-x physics. The leading terms are

Ið2Þqg ¼ 2CATF

z

�
172

27
−
8ζ2
3

�
;

Ið2Þqq ¼ Ið2Þqq0 ¼ Ið2Þqq̄ ¼ Ið2Þqq̄0 ¼
2CFTF

z

�
172

27
−
8ζ2
3

�
;

Ið3Þqg ¼ 2TF

z

��
208ζ2
9

þ 32ζ3
3

−
17152

243

�
C2
A ln zþ

�
160ζ2
27

−
32ζ3
9

−
3164

729

�
CANfTF

þ
�
−16ζ2 þ

512ζ3
9

þ 32ζ4
3

−
269

9

�
CACF þ

�
12536ζ2

81
þ 1096ζ3

9
þ 920ζ4

9
−
470494

729

�
C2
A

þ
�
−
512ζ2
27

−
64ζ3
9

þ 40184

729

�
CFNfTF

�
; ð18Þ

Ið3Þqq ¼ Ið3Þqq0 ¼ Ið3Þqq̄ ¼ Ið3Þqq̄0 ¼
2TF

z

��
208ζ2
9

þ 32ζ3
3

−
17152

243

�
CACF ln zþ

�
12008ζ2

81
þ 120ζ3 þ

920ζ4
9

−
456266

729

�
CACF

þ
�
−
32ζ2
9

−
64ζ3
9

þ 16928

729

�
CFNfTF þ

�
−16ζ2 þ

512

9
ζ3 þ

32

3
ζ4 −

269

9

�
C2
F

�
: ð19Þ

There has been recent progress in understanding TMD
PDFs at small x [82–85]. Our explicit results provide useful
data through next-to-leading logarithmic accuracy, which
can foster further progress.
To estimate the size of the three-loop corrections, we plot

the ratio of N3LO and NNLO coefficient functions for
0 < z < 1 in Fig. 2,

N3LO
NNLO

¼ 1þ ðαs
4πÞ3Ið3Þij ðzÞ

αs
4π I

ð1Þ
ij ðzÞ þ ðαs

4πÞ2Ið2Þij ðzÞ
: ð20Þ

It can be seen that the three-loop corrections are non-
negligible and have nontrivial shape dependence. Note that
the coefficient functions are not ordinary functions of z, but
distributions. To see the perturbative convergence of the
TMD PDFs, we define an integrated version of it,

Bq=Nðz;qmax
T Þ¼

X
i

Z
qmax
T

0

dqT

Z
1

z

dξ
ξ
fT;qiðξ;qTÞϕi=Nðz=ξÞ;

ð21Þ

where fT;qiðξ; qTÞ is the momentum-space version of the
TMD coefficients defined in Eq. (15), and qmax

T is a UV
cutoff, below which the TMD approximation can be
justified. In Fig. 3 we depict zBu=N with qmax

T ¼ 10 GeV
at various perturbative orders, where N is the proton. It can
be seen that, for moderate and small z, NLO and NNLO
corrections are large and there is no obvious perturbative
convergence. On the other hand, after inclusion of the
N3LO corrections, the perturbative series is stabilized even
for z as small as 10−4. This gives us confidence that

FIG. 2. K factor at N3LO for the coefficient functions.
Numerical evaluation of HPLs are made with the HPL

package [86].

FIG. 3. Integrated TMD PDFs at various perturbative order.
We use NNPDF30_nnlo_as_0118 [87] throughout the numerical
calculation.
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perturbative uncertainties are under good control at
this order.
Discussion.—We have calculated for the first time the

quark TMD beam function and TMD PDFs at the N3LO in
QCD. The key new idea is the generalization of the IBPs
equations to Feynman integrals with the exponential
regulator for rapidity divergence. We hope that the
N3LO results can improve our understanding about
TMD factorization. There are several interesting directions
to pursue in the future.
An obvious next thing to calculate is the gluon TMD

PDFs at N3LO. Past experience [37] shows that gluon TMD
PDFs share the same set of MIs with the quark TMD PDFs,
which significantly simplifies the calculation. It would also
be interesting to calculate the TMD fragmentation function
at N3LO. At NNLO, the timelike TMD functions can be
obtained from spacelike ones by analytic continuation [35–
37]. However, it is known from the splitting function
calculation that naive analytic continuation must be sup-
plemented with physical constraint from reciprocity con-
sideration [88], and still, small uncertainty remains [89–
91]. It would be interesting to see if a direct calculation of
timelike TMD functions can shed light on this problem. Our
results represent the last missing ingredient for generalizing
qT subtraction [92] to N3LO (see also Refs. [41,81]). We
note that there has also been progress in calculating the
beam function for beam thrust [93], where the leading color
contribution at N3LO has become available very recently
[94]. However, to achieve N3LO accuracy based on N-
jettiness subtraction [95,96], the N3LO (beam) thrust soft
function is still missing [97,98]. Once a fully differential
N3LO prediction with qT subtraction becomes available, it
would also be important to consider the perturbative power
corrections, where rapidity logarithms beyond leading
power need to be understood better [28,99] (see also
[100,101]). It would also be interesting to study if the
idea of generalized IBPs introduced in this Letter, perhaps
with some modification, is helpful in problems where
nonstandard Feynman propagators are encountered, such
as two-loop qT soft function for top-quark pair produ-
ction [102,103] or thrust and hemisphere soft function
[97,98,104] with a step function in the integrand. Integrals
with the latter form are particularly interesting since they
appear frequently in precision jet substructure [105].
Finally, given the success of the exponential regulator in
perturbative calculations, it would be interesting to see if it
can be applied to TMD PDFs on lattice, where rapid
progress is being made recently [106–110].
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