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Magic-state distillation (or nonstabilizer state manipulation) is a crucial component in the leading
approaches to realizing scalable, fault-tolerant, and universal quantum computation. Related to non-
stabilizer state manipulation is the resource theory of nonstabilizer states, for which one of the goals is to
characterize and quantify nonstabilizerness of a quantum state. In this Letter, we introduce the family of
thauma measures to quantify the amount of nonstabilizerness in a quantum state, and we exploit this family
of measures to address several open questions in the resource theory of nonstabilizer states. As a first
application, we establish the hypothesis testing thauma as an efficiently computable benchmark for the one-
shot distillable nonstabilizerness, which in turn leads to a variety of bounds on the rate at which
nonstabilizerness can be distilled, as well as on the overhead of magic-state distillation. We then prove that
the max-thauma can be used as an efficiently computable tool in benchmarking the efficiency of magic-state
distillation, and that it can outperform previous approaches based on mana. Finally, we use the min-thauma
to bound a quantity known in the literature as the “regularized relative entropy of magic.”As a consequence
of this bound, we find that two classes of states with maximal mana, a previously established
nonstabilizerness measure, cannot be interconverted in the asymptotic regime at a rate equal to one. This
result resolves a basic question in the resource theory of nonstabilizer states and reveals a difference between
the resource theory of nonstabilizer states and other resource theories such as entanglement and coherence.
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Introduction.—Quantum computers hold the promise of
a substantial speed-up over classical computers for certain
algebraic problems [1–3] and the simulation of quantum
systems [4,5]. One main obstacle to the physical realization
of quantum computation is the decoherence that occurs
during the execution of quantum algorithms. Fault-tolerant
quantum computation [6,7] provides a framework to over-
come this difficulty and allows reliable quantum compu-
tation when the physical error rate is below a certain
threshold value.
According to the Gottesman-Knill theorem [8,9], a

quantum circuit comprised of only Clifford gates confers
no computational advantage because it can be simulated
efficiently on a classical computer. However, the addition
of a nonstabilizer state can lead to a universal gate set via a
technique called state injection [10,11], thus, achieving
universal quantum computation. The key of this resolution
is to perform magic-state distillation [12] (see [13–19] for
recent progress), wherein stabilizer operations are used to
transform a large number of noisy nonstabilizer states into a
small number of high quality nonstabilizer states.
Therefore, a quantitative theory is highly desirable in order
to fully exploit the power of nonstabilizer states in fault-
tolerant quantum computation.

Quantum resource theories (QRTs) offer a powerful
framework for studying different phenomena in quantum
physics, and the seminal ideas of QRTs have recently been
influencing diverse areas of physics [20]. In the context of
the nonstabilizer-state model of universal quantum com-
putation, the resource-theoretic approach reduces to the
characterization and quantification of the usefulness of the
resourceful nonstabilizer states [21,22]. In the framework
of [21,22], the free operations are the stabilizer operations,
those that possess a fault-tolerant implementation in the
context of fault-tolerant quantum computation, and the free
states are the stabilizer states (STAB). Stabilizer operations
include preparation and measurement in the computational
basis, and a restricted set of unitary operations, called
the Clifford unitaries. The free states consist of all pure
stabilizer states, which are eigenstates of the generalized
Pauli operators, and their convex mixtures. The resource
states, namely, the nonstabilizer states, are key resources
that are required to achieve some desired computational
tasks. For quantum computers acting on qudit registers
with odd dimension d, the resource theory of nonstabilizer
states (or equivalently, contextuality with respect to
stabilizer measurements [23,24]) has been developed
[21,22,25]. The resource theory of nonstabilizer states
for multiqubit systems was recently developed in [26–28].
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In this Letter, we solve some fundamental open ques-
tions in the resource theory of nonstabilizer states, and we
develop a framework for one-shot magic state distillation.
Our main tool for doing so is the thauma family of
nonstabilizer monotones, which quantify the amount of
nonstabilizerness in a given state by comparing it to a
positive semidefinite operator with nonpositive mana (i.e.,
a subnormalized state with no nonstabilizerness). Our first
contribution is to introduce the one-shot distillable non-
stabilizerness of a quantum state and an upper bound for it
named hypothesis testing thauma. This result leads to
various applications for magic-state distillation, which
can be interpreted as fundamental limits. The max-thauma
is another member of the thauma family, and we prove that
it is an efficiently computable nonstabilizerness monotone,
which can, in turn, be used to evaluate the efficiency of
magic-state distillation. Further, we provide an example
to demonstrate that max-thauma outperforms mana in
benchmarking the efficiency of magic-state distillation.
We also prove that the min-thauma is an additive lower
bound on the “regularized relative entropy of magic,” the
latter quantity defined in [22]. This bound then leads to
the conclusion that two magic states with maximal neg-
ativity cannot be interconverted asymptotically at a rate
equal to one.
Discrete Wigner function.—Now, we recall the definition

of the discrete Wigner function [29–31], which is an
essential tool in the analysis of the resource theory of
nonstabilizer states. Throughout this Letter, a Hilbert space
implicitly has an odd dimension, and if the dimension is not
prime, it should be understood to be a tensor product of
Hilbert spaces, each having an odd prime dimension.
Let Hd denote a Hilbert space of dimension d, and let

fjjigj¼0;…;d−1 denote the standard computational basis. For
a prime number d, we define the respective shift and boost
operators X, Z ∈ LðHdÞ as Xjji ¼ jj ⊕ 1i and Zjji ¼
ωjjji, with ω ¼ e2πi=d. We define the Heisenberg-Weyl
operators as Tu ¼ τ−a1a2Za1Xa2 , where τ ¼ eðdþ1Þπi=d
and u ¼ ða1; a2Þ ∈ Zd × Zd.
For each point u in the discrete phase space, there is a

corresponding operator Au, and the value of the discrete
Wigner representation of a quantum state ρ at this point is
given by WρðuÞ ≔ TrAuρ=d, where fAugu are the phase-
space point operators: Au ≔ TuA0T

†
u, A0 ≔ ð1=dÞPu Tu.

We give more details of this formalism in Appendix A [32].
Thauma.—It is well known that quantum computations

are classically simulable if they consist of stabilizer
operations acting on quantum states with a positive discrete
Wigner function. Thus, such states are useless for magic-
state distillation [21]. Let Wþ denote the set of quantum
states with a positive discrete Wigner function. States in
Wþ can be understood as being analogous to states with a
positive partial transpose in entanglement distillation
[42,43], in the sense that such states are undistillable.

To address open questions in the resource theory of
nonstabilizer states, we are motivated by the idea of the
Rains bound from entanglement theory [44], as well as its
variants [45–47], which also have fruitful applications in
quantum communication [48–51]. As developed in [44]
and the later work [52], the Rains bound and its variants
consider subnormalized states with nonpositive logarithmic
negativity [53,54] as useless resources, and they use the
divergence between the given state and such subnormalized
states to evaluate the behavior of entanglement distillation.
Thus, inspired by the main idea behind the Rains bound,

we introduce the set of subnormalized states with non-
positive mana:W ≔ fσ∶MðσÞ ≤ 0; σ ≥ 0g, with the mana
MðρÞ of a quantum state ρ defined as [22]

MðρÞ ≔ log2kρkW;1;

where the Wigner trace norm of an operator V is defined as
kVkW;1 ≔

P
u jWVðuÞj. It follows from definitions that

Trσ ≤ 1 if σ ∈ W. Note that the mana [22] is analogous to
the logarithmic negativity [53,54]. Furthermore, the fol-
lowing strict inclusions hold: STAB ⊊ Wþ ⊊ W.
Now, we define the thauma [55] of a state ρ as

θðρÞ ≔ min
σ∈W

DðρkσÞ;

whereDðρkσÞ is the quantum relative entropy [56], defined
as DðρkσÞ ¼ Trfρ½log2 ρ − log2 σ�g when the support of ρ
is contained in the support of σ and equal to þ∞,
otherwise. The thauma can be understood as the minimum
relative entropy between a quantum state and the set of
subnormalized states with nonpositive mana. The thauma is
a nonstabilizerness measure that can be efficiently com-
puted via convex optimization (see Appendix B [32]).
Following from the definition of thauma above, we
define the regularized thauma of a state ρ as θ∞ðρÞ ≔
limn→∞ θðρ⊗nÞ=n.
The definition of thauma given above can be generalized

to a whole family of thauma measures of nonstabilizerness.
Defining a generalized divergence DðρkσÞ to be any
function of a quantum state ρ and a positive semidefinite
operator σ that obeys data processing [57,58], i.e.,
DðρkσÞ ≥ D½N ðρÞkN ðσÞ� where N is a quantum channel,
we arrive at the generalized thauma of a quantum state ρ

θðρÞ ≔ inf
σ∈W

DðρkσÞ:

If the generalized divergence D is non-negative for a state ρ
and a subnormalized state σ and equal to zero if ρ ¼ σ, then
it trivially follows that the generalized thauma θðρÞ is a
nonstabilizerness monotone, meaning that it is nonincreas-
ing under the free operations and equal to zero for stabilizer
states. Examples of generalized divergences, in addition
to the relative entropy, include the Petz-Rényi relative
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entropies [59] and the sandwiched Rényi relative entropies
[60,61]. See Appendix C for further details [32].
Min- and max-thauma.—In what follows, we make use

of the Petz-Rényi relative entropy of order zero [59] and the
max-relative entropy [62] to define the min-thauma and the
max-thauma, respectively. As we prove in what follows,
these two members of the thauma family are efficiently
computable by semidefinite programs (SDPs) [63] and are
particularly useful for addressing open questions in the
resource theory of nonstabilizer states.
The min-thauma of a state ρ is defined as

θminðρÞ ≔ min
σ∈W

D0ðρkσÞ ≔ min
σ∈W

½−log2TrPρσ�;

where Pρ denotes the projection onto the support of ρ. Note
that θminðρÞ is an SDP and the duality theory of SDPs [63]
leads to the dual SDP

θminðρÞ ¼ −log2minfkQkW;∞∶Q ≥ Pρg;

where kVkW;∞ ≔ dmaxujWVðuÞj denotes the Wigner
spectral norm of an operator V acting on a space of
dimension d. For any pure state jψi,

θminðψÞ ¼ −log2max
σ∈W

Fðψ ; σÞ ≤ −log2FStabðψÞ;

where FSTABðψÞ is the stabilizer fidelity [64].
The max-thauma of a state ρ is defined as

θmaxðρÞ ≔ min
σ∈W

DmaxðρkσÞ ≔ min
σ∈W

½minfλ∶ρ ≤ 2λσg�
¼ log2min fkVkW;1∶ρ ≤ Vg:

As the following proposition states, the min- and
max-thauma are additive nonstabilizerness measures.
Additionally, the min-thauma is a lower bound on the
regularized thauma, and the max-thauma is an upper
bound.
Proposition 1.—For states ρ and τ, it holds that

θminðρ ⊗ τÞ ¼ θminðρÞ þ θminðτÞ;
θmaxðρ ⊗ τÞ ¼ θmaxðρÞ þ θmaxðτÞ:

Consequently, θminðρÞ ≤ θ∞ðρÞ ≤ θmaxðρÞ.
The proof of Proposition 1 relies on the Petz-Rényi

relative entropy of order zero [62], the max-relative entropy
[62], and the duality theory of SDPs [63] (see Appendix D
for details [32]).
In Appendix E [32], we prove that the max-thauma

possesses a stronger monotonicity property, in the sense
that it does not increase on average under stabilizer
operations.
Here, we note that an important consequence of the

additivity of min-thauma is that the maximum overlap

between jϕi⊗n and the set W is 2−nθminðϕÞ; i.e., for
any τ ∈ W (or STAB), we have that Tr½jϕihϕj⊗nτ� ≤
2−nθminðϕÞ.
Thauma for basic nonstabilizer states.—Proposition 2

below states that the min-, regularized, and max-thauma
collapse to the same value for several interesting non-
stabilizer states, including the Strange, Norrell, H, and
T states.
The Strange and Norrell states are defined as [22]

jSi ≔ ðj1i − j2iÞ=
ffiffiffi
2

p
; jNi ≔ ð−j0i þ 2j1i − j2iÞ=

ffiffiffi
6

p
:

The qutrit Hadamard gate is given by [65]

H ¼ 1ffiffiffi
3

p

0
B@

1 1 1

1 ω ω2

1 ω2 ω

1
CA; ð1Þ

where we recall that ω ¼ e2πi=3. The H gate has eigenval-
ues þ1, −1, and i, and we label the three corresponding
eigenstates as jHþi, jH−i, and jHii. The jHþi state is a
nonstabilizer state that is typically considered in the context
of magic-state distillation [12,66]. In what follows, we refer
to it as the Hþ nonstabilizer state.
Another common choice for a non-Clifford gate is the T

gate. The qutrit T gate is given by T ≔ diagðξ; 1; ξ−1Þ,
where ξ ¼ e2πi=9 is a primitive ninth root of unity [65]. The
nonstabilizer state corresponding to the qutrit T gate is
jTi ≔ ð1= ffiffiffi

3
p Þðξj0i þ j1i þ ξ−1j2iÞ, which is the state

resulting from applying the T gate to the stabilizer
state ðj0i þ j1i þ j2iÞ= ffiffiffi

3
p

.
In what follows, we employ the shorthand S≡ jSihSj,

N≡ jNihNj, Hþ ≡ jHþihHþj, and T ≡ jTihTj. Before
stating the theorem, let us recall the definition of the
regularized relative entropy of magic and the relative
entropy of magic [22]

R∞
MðρÞ ≔ lim

n→∞

1

n
RMðρ⊗nÞ; RMðρÞ ≔ min

σ∈STAB
DðρkσÞ:

Proposition 2.—The following equalities hold:

θminðSÞ ¼ θ∞ðSÞ ¼ θmaxðSÞ ¼ log2ð5=3Þ;
θminðNÞ ¼ θ∞ðNÞ ¼ θmaxðNÞ ¼ R∞

MðNÞ ¼ log2ð3=2Þ;
θminðHþÞ ¼ θ∞ðHþÞ ¼ θmaxðHþÞ

¼ R∞
MðHþÞ ¼ log2ð3 −

ffiffiffi
3

p
Þ;

θminðTÞ ¼ θ∞ðTÞ ¼ θmaxðTÞ ¼ log2½1þ 2 sinðπ=18Þ�:

Appendix F [32] contains a proof of Proposition 2.
In the forthcoming sections, we provide applications of
Propositions 1 and 2 to the resource theory of nonstabilizer
states.
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Fundamental limits for distilling nonstabilizer states.—
The basic task of magic-state distillation [12] can be
understood as follows. For any given quantum state ρ,
we aim to transform this state to a collection of non-
stabilizer states (e.g., jTi) with high fidelity using stabilizer
operations. The goal is to maximize the number of target
states while keeping the transformation infidelity within
some tolerance ε. After magic-state distillation, one can use
a circuit gadget (which requires only stabilizer operations)
to transform this nonstabilizer state into a non-Clifford gate
[10,11]. Protocols for distillation in the qudit setting of
quantum computing were recently developed in [66–69].
In the following, we study the fundamental limit of

magic-state distillation of a pure target nonstabilizer state.
We define the approximate one-shot distillable ϕ non-
stabilizerness of a given state ρ as the maximum number of
jϕihϕj nonstabilizer states that can be obtained via stabi-
lizer operations, while keeping the infidelity within a given
tolerance. Formally, for any triplet ðρ;ϕ; εÞ consisting of an
initial state ρ, a target pure state ϕ, and an infidelity
tolerance ε, the one-shot ε-error distillable ϕ nonstabilizer-
ness of ρ is defined to be the maximum number of ϕ
nonstabilizer states achievable via stabilizer operations,
with an error tolerance of ε

Mε
ϕðρÞ ¼ supfk∶ΛðρÞ≈ε jϕihϕj⊗k;Λ ∈ SOg;

where jψihψ j≈ε σ is a shorthand for hψ jσjψi ≥ 1 − ε and
SO for stabilizer operations.
In what follows, we focus on the one-shot distillable Hþ

nonstabilizerness Mε
HþðρÞ and the one-shot distillable T

nonstabilizerness Mε
TðρÞ.

First, we connect the task of magic-state distillation to
quantum hypothesis testing between nonstabilizer states
and operators in the setW (recall that STAB ⊊ W), and we
note, here, that such an approach was previously taken in
entanglement theory [44,70]. Quantum hypothesis testing
is the task of distinguishing two possible states ρ0 and ρ1
(null hypothesis ρ0, alternative hypothesis ρ1). We are
allowed to perform a measurement characterized by the
positive operator-valued measure fM; 1 −Mg with respec-
tive outcomes 0 and 1. If the outcome is 0, we accept the
null hypothesis. Otherwise, we accept the alternative one.
The probabilities of type I and type II errors are given by
Trð1 −MÞρ0 and TrMρ1, respectively. The hypothesis
testing relative entropy [71,72] quantifies the minimum
type II error probability provided that the type I error
probability is within a given tolerance: Dε

Hðρ0kρ1Þ ≔
−log2minfTrMρ1j0 ≤ M ≤ 1; 1 − TrMρ0 ≤ εg.
Proposition 3.—Given a state ρ, the following holds:

Mε
HþðρÞ ≤

minσ∈WDε
HðρkσÞ

log2ð3 −
ffiffiffi
3

p Þ ; ð2Þ

Mε
TðρÞ ≤

minσ∈WDε
HðρkσÞ

log2½1þ 2 sinðπ=18Þ� : ð3Þ

A consequence of Proposition 3 is that the thauma of a
quantum state is an upper bound on its distillableHþ (or T)
nonstabilizerness. Specifically, by applying the quantum
Stein’s lemma [73–76], we find the following.
Corollary 4.—The distillable nonstabilizerness of ρ

satisfies

MHþðρÞ ¼ lim
ε→0

lim
n→∞

1

n
Mε

Hþðρ⊗nÞ ≤ θðρÞ
log2ð3 −

ffiffiffi
3

p Þ ;

MTðρÞ ¼ lim
ε→0

lim
n→∞

1

n
Mε

Tðρ⊗nÞ ≤ θðρÞ
log2½1þ 2 sinðπ=18Þ� :

Efficiency of magic-state distillation.—The efficiency of
distilling a nonstabilizer state ξ from several independent
copies of a resource state ρ is given by the minimum
number of copies of ρ needed, on average, to produce ξ
using stabilizer operations

Neffðρ→ ξÞ¼ inf fn=p∶Λðρ⊗nÞ→ ξwith probp;Λ∈SOg:

Previously, the authors of [22] derived the following
lower bound on the efficiency of magic-state distillation:

Neffðρ → ξÞ ≥ NMðρ; ξÞ ≔ MðξÞ=MðρÞ: ð4Þ

The lower bound in [22] was established by employing the
mana of nonstabilizer states. Here, we utilize similar ideas
and show that the max-thauma can also be applied to bound
the efficiency of magic-state distillation.
Proposition 5.—The efficiency of distilling a nonstabil-

izer state ξ from resource states ρ is lower bounded
by Nθmax

ðρ; ξÞ ≔ θmaxðξÞ=θmaxðρÞ.
Figure 1 demonstrates that the lower bound from

Proposition 5 can be tighter than the lower bound in (4),
thus, giving an improved sense of the efficiency.
On the overhead of magic-state distillation.—The over-

head of magic-state distillation is defined as the ratio of the
number of input to output states, under a target error rate
[13,18]. Although our notion of error for magic-state
distillation is different from that typically employed in
the literature, here, we note that the inverse of the one-shot
distillable ϕ nonstabilizerness (i.e., ½Mε

ϕðρÞ�−1) can be
considered a reasonable way to measure the overhead of
magic-state distillation. Then, our upper bounds in
Proposition 3 and Corollary 4 become lower bounds on
the overhead.
Inequivalence between nonstabilizer states with maximal

mana.—A fundamental problem in any quantum resource
theory is to determine the interconversion rate between
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different resource states [20], in particular, between given
states and maximally resourceful states. This is rooted in
the fact that, in any resource theory, maximally resource-
ful states play a unique role in quantifying the resource-
fulness of other states and assessing the performance of
resource manipulation. Considering entanglement theory
(or coherence theory) as an example, the interconversion
between a given state and maximally entangled (coher-
ent) states leads to fundamental tasks such as entangle-
ment (coherence) distillation and dilution [20,77,78].
Notably, any two maximally entangled (coherent) states
under all resource measures in the same dimension are
equivalent under free operations.
However, this is not the case in the resource theory of

nonstabilizer states. Surprisingly, we find that, even though
the Strange state and the Norrell state each have maximum
mana and, thus, are the most costly resource to simulate on
a classical computer using certain known algorithms
[22,79], they are not equivalent even in the asymptotic
regime. Note that the mana plays a significant role as a
measure of nonclassical resources in quantum computation
[25,79]. In particular, recall that mana is a nonstabilizerness
measure analogous to logarithmic negativity in entangle-
ment theory. In contrast, logarithmic negativity of a
bipartite state is equal to its maximal value if and only
if the state is maximally entangled.
To establish this result, we recall that the asymptotic

conversion rate from ρ to ξ under asymptotically non-
stabilizer-nongenerating transformations is given by the
ratio of their regularized relative entropies of resource [80].
That is, Rðρ → ξÞ ¼ R∞

MðρÞ=R∞
MðξÞ. Further, we recall that

the Strange and Norrell states have maximum mana [22]:
MðSÞ ¼ MðNÞ ¼ log2ð5=3Þ. However, Proposition 2 and
the fact that R∞

MðSÞ ≥ θ∞ðSÞ indicate that there is a gap
between their regularized relative entropies of magic. As a
consequence, we find that

Theorem 6.—For the Strange state jSi and the Norrell
state jNi, the following holds:

RðN → SÞ ¼ R∞
MðNÞ=R∞

MðSÞ ≤ log2ð3=2Þ
log2ð5=3Þ

< 1:

Since stabilizer operations are included in the set of
asymptotically nonstabilizer-nongenerating transforma-
tions, this result also establishes that the rate to obtain
the Strange state from the Norrell state is smaller than one
under stabilizer operations. Thus, the gap between R∞

MðNÞ
and R∞

MðSÞ, as established in Theorem 6, closes an open
question from [[22] Section IV. D].
This result demonstrates a fundamental difference

between the resource theory of nonstabilizer states and
the resource theory of entanglement or coherence.
Specifically, we show that the maximally resourceful non-
stabilizer states under certain resource measure cannot be
interconverted at a rate equal to one, even in the asymptotic
regime, while the maximally resourceful states in entangle-
ment theory or coherence theory can be interconverted
equivalently in the one-copy setting. However, it remains
open to determine whether the conversion rate from the
Strange state to the Norrell state is strictly smaller than
log2ð5=3Þ= log2ð3=2Þ. Such an inequality would imply the
irreversibility of asymptotic magic state manipulation.
Conclusions.—We have introduced the thauma family of

measures to quantify and characterize the nonstabilizerness
resource possessed by quantum states that are needed for
universal quantum computation. The min- and max-thauma
are efficiently computable by semidefinite programming
and lead to bounds on the rates at which one can
interconvert nonstabilizer states. These bounds have helped
to solve pressing open questions in the resource theory of
nonstabilizer states. More generally, this Letter establishes
fundamental limitations to the processing of quantum
nonstabilizerness, opening new perspectives for its inves-
tigation and exploitation as a resource in quantum infor-
mation processing and quantum technology. Along this
line, we suspect that our results will have immediate impact
on the quantum optics community working on the resource
theory of non-Gaussianity [81–83] and continuous-variable
quantum computing [84,85], because the main idea behind
the thauma measure can be generalized to this setting.
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FIG. 1. Comparison between Nθmax
ðρin → HþÞ and NMðρin →

HþÞ for input ρin ¼ ð1 − p1 − p2ÞjHþihHþj þ p1 jH−ihH−j þ
p2jHiihHij with p2 ¼ 1=10.
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