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The quantum approximate optimization algorithm (QAOA) has rapidly become a cornerstone of
contemporary quantum algorithm development. Despite a growing range of applications, only a few
results have been developed towards understanding the algorithm’s ultimate limitations. Here we report that
QAOA exhibits a strong dependence on a problem instances constraint to variable ratio—this problem
density places a limiting restriction on the algorithms capacity to minimize a corresponding objective
function (and hence solve optimization problem instances). Such reachability deficits persist even in the
absence of barren plateaus and are outside of the recently reported level-1 QAOA limitations. These findings
are among the first to determine strong limitations on variational quantum approximate optimization.
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Introduction.—Variational hybrid quantum-classical
algorithms have become an area of significant interest [1–
3]. These algorithms minimize objective functions which
can be largely agnostic to systematic errors. This increases
their potential in current noisy intermediate-scale quantum
devices (NISQ) [4–6]. These hybrid algorithms involve
parametrized quantum circuits trained in a classical learning
loop. Of particular interest is the quantum approximate
optimization algorithm (QAOA) designed to find approxi-
mate solutions to combinatorial optimization problems [7].
Although QAOA has been shown to approximate solutions
to problems such as MAX-CUT [8], realize Grover’s search
algorithm [9,10], and execute optimal protocols for quantum
control [11], little is known about its ultimate limitations.
Recent findings suggest that randomly parametrized

quantum circuits in the large scale will suffer from barren
plateaus resulting in an exponentially low probability to
find correct solutions [1]. Recent results also show that
classical algorithms in a certain restrictive (single depth)
setting can outperform level-1 QAOA [2]. Can higher depth
versions achieve advantage over classical algorithms?
QAOA performance has an evident dependence on the

circuit-depth and it is observed that increasing depth
improves the quality of the possible approximation (at
the cost of increasing the parameter search space). We show
that circuit depth is not the only limiting restriction. Indeed,
we found that finding appropriate solutions has a strong
dependence on the ratio of a problems constraint to
variables (problem density). Hence, QAOA exhibits strong
dependence on a problems density, and, for any fixed
ansatz, there exists problem instances of high-density that
appear not to be accessible. This feature persists as a
fundamental limitation exhibited by QAOA.
As ameans to study the performance of QAOA,we turn to

constraint satisfiability—a tool with a successful history.
Boolean satisfiability problems or SAT are decision

problems expressed in terms of n variables and m clauses
(or constraints). To solve such problems one decideswhether
a given Boolean formula expressed in conjunctive normal
form (CNF) can be made true by the assignment of truth
values to thevariables.The density of suchproblem instances
is the clause to variable ratio, the clause density α ¼ m=n. k-
SAT clauses are randomly generated to form instances by
uniformly selecting unique k-tupels from the union of a
variable set (cardinality n > k) and its element wise neg-
ation. We consider both random instances of non-determin-
istic polynomial time complete or NP-complete 3-SAT, as
well as random instances of 2-SAT, which is efficiently
solvable. QAOA aims to approximate solutions to optimi-
zation version of these problems, maximum satisfiability or
MAX-SAT. The optimal solutions of such problems mini-
mize the number of violated clauses. Both MAX-2-SATand
MAX-3-SAT are NP-Hard for exact solutions and approx-
imable complete (APX-complete) for approximations
bounded above by a constant approximation ratio [12]. In
these settings, the algorithm’s limiting performance exhibits
strong dependence on the problem density in both cases.
We call the QAOA problem general when considering

random 3-SAT and 2-SAT instances with the standard one-
body driver Hamiltonian [7]. In both cases we found strong
limiting dependence of QAOA for clause densities above
∼1. Moreover, the difference between the two problems
(i.e., 2- vs 3-SAT) seemed negligible to a visual approxi-
mation. The density played the dominate role correlating
inversely with performance. We further consider this same
scenario, replacing the driver Hamiltonian with a n-body
projector ðjþihþjÞ⊗n. While problem density dependence
is still strongly exhibited, we found a decrease in the error
of best possible approximation. Finally, by considering a
single projector onto a solution space and the same driver as
above, the variational version of Grover’s search algorithm
is recovered. While the clause density is fixed for a given n,
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the analytical solutions of this model provide a test bed to
ascertain that energy approximation is critically dependent
on circuit depth at each fixed density.
Quantum approximate optimization.—The usual pro-

cedure in implementing QAOA is as follows [7]. (1) Create
ansatz states, jψðγ; βÞi, on a quantum computer where γ ¼
ðγ1; γ2;…:; γpÞ and β ¼ ðβ1; β2;…:; βpÞ are tunable over
some fixed range. The state is preparedby applying a sequence
of 2p-parameter gates acting on the reference state, jþi⊗n as

jψðγ; βÞi ¼
Yp
i¼1

Uðγi; βiÞjþi⊗n; ð1Þ

where

Uðγk; βkÞ ¼ expf−{βkHxg expf−{γkVg: ð2Þ
(2) Measurement of this state (1) is done to compute the
expected value of the objective function of interest, hVi. For
QAOA, the objective function is the optimization problem.
(3)Classical optimization algorithms are used to assign a set of
parameters, γ� and β� that minimize hψðγ; βÞjVjψðγ; βÞi.
(4) Steps 1 and 2 are repeated by adjusting parameters to ap-
proximately minimize V, hψðγ�; β�ÞjVjψðγ�; β�Þi ≈minðVÞ.
The variational ansatz states created by QAOA take

inspiration from the quantum adiabatic algorithm, where a
system is initialized in an easy to prepare ground state of a

local Hamiltonian Hx ¼
P

i σ
ðiÞ
x , the driver Hamiltonian,

which is then slowly transformed to the problem
Hamiltonian, V [13]. Trotterization of this procedure gives
a long QAOA sequence as can be understood from Eq. (1).
However, the Trotter approximation is evidently violated
for a typical sequence. Outside of this understanding, the
performance of QAOA seems rather remarkable.
Quantum approximation in Boolean satisfiability.—

Boolean satisfiability is the problem of determining satisfi-
ability of a Boolean expression written in conjunctive
normal form (CNF). It is possible to map any Boolean
satisfiability problem into 3-SAT; conjunction of clauses
restricted to three literals, via Karp reduction. It is well
known that decision 3-SAT is NP complete [14]. Decision
2-SAT is the problem restricted to clauses limited to two
literals. This problem can be solved in polynomial time
[15]. 2-SAT exhibits an algorithmic phase transition at a
critical clause to variable ratio, αc ¼ 1 [16]. The transition
is empirically exhibited in 3-SAT numerics [17]. This
implies that for α < αc almost all instances are satisfiable,
and for α > αc almost all instances are not.
Known algorithms exhibit a slow-down around the phase

transition, suggesting that most of the hard instances are
concentrated near this point. This signature of an easy-hard-
easy transition is exhibited for the decision version of SAT.
In order to approximate solutions of MAX-3-SAT and

MAX-2-SAT, an embedding scheme maps SAT-instances
into Hamiltonians [18–20] as :

HSAT ¼
X
l

PðlÞ; ð3Þ

where l indexes each clause in the SAT instance and PðlÞ
are rank-one projectors that penalize each unsatisfiable
assignments with at least 1 unit of energy. By this
construction, we embed solutions to the MAX-3-SAT or
MAX-2-SAT into the ground state space of HSAT: 2-SAT
instances require only quadratic interactions, whereas 3-
SAT requires three-body ones. Satisfiable instances are
characterized by a zero ground state energy, Eg ¼ 0, and
unsatisfiable instances with Eg ≥ 1, which is representative
of the minimum violated clauses.

QAOA with standard settings, Hx ¼
P

i σ
ðiÞ
x and V ¼

HSAT, can now be used to calculate the energy approxi-
mation EQAOA

g , where

EQAOA
g ¼ min

γ;β
hψðγ; βÞjHSATjψðγ; βÞi: ð4Þ

We numerically study f ¼ EQAOA
g −minðVÞ as a func-

tion of clause density α, for a p-depth QAOA circuit on
randomly generated 3-SAT and 2-SAT instances (see
Fig. 1). Although increased depth versions achieve better

FIG. 1. f ¼ EQAOA
g −minðHSATÞ vs clause density for 3-SAT

(top) and 2-SAT (bottom) for differing QAOA depths. Squares
show the average value obtained over 100 randomly generated
instances for n ¼ 6with error bars indicating the standard error of
mean. Plots also show improved performance for higher depths.
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approximations, the performance or best possible approxi-
mation of any arbitrary fixed depth QAOA exhibit a
nontrivial dependence on the density of the problem, α.
Reachability deficits.—Fixed depth QAOA on MAX-3-

SATandMAX-2-SAT instances show limiting performance
beyond a critical clause density. Higher depth versions are
needed to break free from this limitation. Moreover, we
observe recovery of ground state energy to strongly depend
on the QAOA circuit depth and also the problem density for
fixed problem size. This limitation is what we refer to as
reachability deficits and is formulated as follows: let jψi,
be the ansatz states generated from a p-depth QAOA circuit
as shown in (1). Then

f ¼ min
ψ⊂H

hψ jVjψi −min
ϕ∈H

hϕjVjϕi; ð5Þ

characterizes the limiting performance of QAOA. The first
term on the right indicates the minimization of the objective
function V, over the set of reachable states generated by a
fixed depth QAOA ansatz whereas the second term
represents the exact optimum computed by minimization
over the entire Hilbert space. The rhs of equation (5) can be

expressed as a function, fðp; α; nÞ. For p ∈ N and fixed
problem size, ∃ α > αc such that f ≠ 0. This is a reach-
ability deficit.
The fixed depth QAOA exhibits such reachability

deficits even when modified with a new driver Hx ¼
ðjþihþjÞ⊗n (see Fig. 2). The modified version requires
lower circuit depths for achieving similar performance as
standard QAOA but still exhibits reachability deficits.
We analyze numerically the dependence of p�, the

critical circuit depth, or the minimum circuit depth for
which QAOA returns the exact ground state energies (or
least number of violated clauses) for both MAX-3-SAT and
MAX-2-SAT up to a set tolerance (see Fig. 3). The tolerance
is set as a condition on the overlap between the QAOA
generated state and the exact ground state, which can be
calculated as follows: let fjgsiig be the d degenerate ground
states of HSAT, then the overlap is given by,

η ¼
Xd
i¼1

jhψpðγ; βÞjgsiij2: ð6Þ

Instances to the left (classically easy), α < αc, require low
critical depth to recover exact ground state energies and for

FIG. 2. f ¼ EQAOA
g −minðHSATÞ vs clause density for 3-SAT

(top) and 2-SAT (bottom) for QAOA with driver Hamiltonian,
Hx ¼ ðjþihþjÞ⊗n. Squares show the average value obtained over
100 randomly generated instances for n ¼ 6 with error bars
indicating the standard error of mean. Plots also show improved
performance for higher depths.

FIG. 3. Critical depth, p� vs clause density for 3-SAT (top) and
2-SAT (bottom). Squares represent the minimum QAOA depth
for which an average overlap, η ≥ 0.95 is achieved. Averages are
calculated over 100 randomly generated SAT instances.
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instances α > αc, the critical depth is higher and grows with
α. Note in particular that the transition point does not
coincide with the algorithmic phase transition point exhib-
ited in decision version of 3-SAT, although the critical depth
of exhibited reachability deficits is closer for 2-SAT’s
critical point.
Reachability deficits are different from barren plateaus

[1], where randomly parametrized quantum circuits for
large problem sizes have exponentially low success in
finding states that minimize the objective function. In the
case of barren plateaus the state that achieves global
minima of the objective function is accessible but choosing
initial parameters randomly have greater probability to set
the initial guess on a plateau of states where evaluation of
gradients concentrates to zero. In contrast, irrespective of
the initial parameter setting, QAOA with depth p < p�
cannot reach optimal values as the corresponding state that
achieves it becomes inaccessible.
Variational Grover search.—Variational Grover search

[10,21] can be thought of as QAOA with the following
setting,

V ¼ jωihωj
and

Hx ¼ ðjþihþjÞ⊗n;

where jωi ∈ C⊗n
2 is the objective state we are searching for.

Hence the objective function of interest here is the
minimization of the expected value of the Hamiltonian
H ¼ 1 − jωihωj over the QAOA ansatz state jψðγ; βÞi or,

min
γ;β

hð1 − jωihωjÞijψðγ;βÞi ¼ min
γ;β

ð1 − jhωjψðγ; βÞij2Þ: ð7Þ

The unitary gates that appear in Eq. (2) can be simplified
into the following expressions:

expf−iγkVg ¼ expf−iγkjωihωjg;
¼ 1þ ðe−iγk − 1Þjωihωj; ð8Þ

similarly,

expf−iβkHxg ¼ expf−iβkjþihþj⊗ng;
¼ 1þ ðe−iβk − 1Þjþihþj⊗n: ð9Þ

We can then write the prepared ansatz state from a p-depth
QAOA circuit as,

jψpðγ; βÞi ¼ Ap
1ffiffiffiffiffiffiffiffiffiffiffiffi

N − 1
p

X
x≠ω

jxi þ Bpjωi; ð10Þ

where the amplitudes of one step can be related to the
amplitudes of the next step via the recursive application of
the matrix,

Mp ¼
 
1þ aðN−1Þ

N −aðbþ 1Þ
ffiffiffiffiffiffiffi
N−1

p
N

−a
ffiffiffiffiffiffiffi
N−1

p
N ðbþ 1Þð1þ a

NÞ

!
: ð11Þ

Here, a ¼ e−iγp − 1, b ¼ e−iβp − 1, and N ¼ 2n. By sub-
stituting Eq. (10) in Eq. (7), we obtain the approximated
energy as

EQAOA
g ¼ 1 − jBpj2: ð12Þ

Minimization in Eq. (7) is done numerically and the
approximate energy as a function of circuit depth is
computed (see Fig. 4). For each problem size it is observed
that approximated energy converges to the exact ground
state energy Eg ¼ 0, when the circuit-depth reaches the
critical value, p�. At this depth, QAOA is able to exactly
recover jψp� ðγ�; β�Þi ¼ jωi for some set of parameters γ�

and β�.
If we set p < p�, the minimization in Eq. (7) terminates

withEQAOA
g > 0. This implies that in Eq. (10), jApj2 ≠ 0. It is

evident that in such a case, QAOA cannot reach the state jωi.
The reachability deficit is removed only when the QAOA
circuit is set with p ≥ p�. To establish the dependence of p�
on the problem density, we increase n, the size of the search

space and recover a Grover scaling, Oð ffiffiffiffi
N

p Þ for p�.

FIG. 4. Top: Convergence to exact ground state energy as a
function of QAOA circuit depth for the variational Grover search
on search space sizes, n ¼ 6, 8, 10, and 12. Bottom: Scaling of
critical depth p� with variable count, n.
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Discussion.—QAOA has been applied many times
throughout the literature, with many findings reporting
its surprising success. However, findings to date appear to
be implicitly constrained to instances of low-problem
density (the ratio of an instances constraints to variables).
Hence, considered instances are not representative of
statistical likely examples, and are only representative of
the low-density subset. It is precisely this low-density
subset that appears not to exhibit reachability deficits.
Although the decision version of 2-SAT differs consid-

erably from 3-SAT (complexity classes P and NP complete,
respectively), their optimization versions, MAX-2-SAT and
MAX-3-SAT (both NP hard), show a remarkable similarity
in critical QAOA depth requirement (see Fig. 3).
We observe that instances with relatively low clause

density require low depth QAOA circuits when compared
to high density instances to approximate the minimum of an
objective function up to a given accuracy. Treating the
critical QAOA depth as the computational cost, this cross-
over from low depth to high depth circuits is similar to the
behavior of computational resources reported for classical
MAX-SAT solvers [22]. Indeed the exhibited point of this
crossover in MAX-SAT [23] is rather different from the
computational phase transition point in Boolean satisfi-
ability; further investigations are necessary in order to
report a MAX-SAT phase transition in QAOA.
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