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We introduce, for each state of a bosonic quantum field, its quadrature coherence scale (QCS), a measure
of the range of its quadrature coherences. Under coupling to a thermal bath, the purity and QCS are
shown to decrease on a timescale inversely proportional to the QCS squared. The states most fragile to
decoherence are therefore those with quadrature coherences far from the diagonal. We further show a large
QCS is difficult to measure since it induces small scale variations in the state’s Wigner function. These two
observations imply a large QCS constitutes a mark of “macroscopic coherence.” Finally, we link the QCS to
optical classicality: optical classical states have a small QCS and a large QCS implies strong optical
nonclassicality.
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Introduction.—Both in order to obtain an ever better
understanding of quantum physics and to solve problems in
quantum information theory, there is continued interest in
the exploration of the classical-quantum boundary and the
identification of those quantum states exhibiting specifi-
cally quantum features, such as coherence and interference
that cannot be explained with classical mechanics and/or
classical probability theory. It has been shown on example
states in model systems [1–6] that fast decoherence results
from the interaction of the system with its environment
when the system is suitably “macroscopic.” It is therefore
much harder to generate, maintain, and detect coherence
on a macroscopic scale than on a microscopic one. These
results contribute to clarifying why the observation of
coherent superpositions is not part of our every day
experience and why building large-scale quantum com-
puters is a major challenge.
To render the previous observations quantitative and

general, several different characterizations have been pro-
posed of the “coherence” [7,8], “large-scale quantum coher-
ence” [9–11], “macroscopic coherence” [10,12], “quantum
macroscopicity” [10,13,14], “macroscopic quantumness”
[10,15–18] and “macroscopic distinctness” [13,18,19] of
quantum states. Resource theories for those closely related
properties of states have also been developed [7,8,10,12,20].
An important and to the best of our knowledge unaddressed
question concerning these quantities is to evaluate the rate at
which they decrease when the system is coupled to its
environment, i.e., to evaluate their sensitivity to environ-
mental decoherence.
We will address the latter question for the states of a

bosonic quantum field for which we introduce the quad-
rature coherence scale (QCS), defined as a measure of
the scale on which the coherences of its quadratures are
appreciable [see (4)]. As we will show, a small QCS means

the coherences for all quadratures are small far from the
diagonal. We call such states quadrature quasi incoherent.
A large QCS means on the contrary that, given any pair of
conjugate quadratures, at least one has appreciable coher-
ences far from the diagonal. In addition, it implies the state
is strongly optically nonclassical.
We show the QCS of a state, if initially large, decreases

fast when the system is coupled to an environment. The
corresponding characteristic timescale is inversely propor-
tional to the (square of the) QCS itself. Purity loss takes
place on a similar timescale. Therefore, the states very
sensitive to environmental decoherence are precisely those
with a large QCS. This result generalizes known results on
the decoherence of optical cat states [2–6] to all mixed
or pure states of the field mode. We further establish that
states with a large QCS are hard to observe since their
Wigner functions have small scale structures. The QCS
thus furnishes a physical parameter that measures the
“coherence size” of the state and that is directly related
to the decoherence rate.
Coherence, interference and coherence scale.—To

reveal the quantum nature of a state ρ, one may proceed
as follows. Consider two noncommuting observables A
and B that we suppose for simplicity to have associated
orthonormal eigenbases jaii, jbmi. Let pAðaiÞ¼haijρjaii
and pBðbmÞ ¼ hbmjρjbmi. Then

pBðbmÞ ¼ pdiag
B ðbmÞ þ

X
i≠j

hbmjaiihajjbmihaijρjaji: ð1Þ

Here, pdiag
B ðbmÞ ¼

P
i jhbmjaiij2pAðaiÞ is of “classical”

nature in the sense that it is the term expected from an
application of classical probability theory. The second
term—the interference term—is of a typical quantum
nature. It is absent when ρ has no off-diagonal matrix
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elements haijρjaji, the so-called “coherences.” For an
overview of measures and monotones of coherence for
observables with discrete spectrum, we refer to [8], and
references therein. If ρ is diagonal in the A basis (ρ is then
said to be A incoherent) or if its coherences in this basis
are small, the quantum nature of ρ is not revealed in this
manner and one can then say that, in this restricted sense,
the state “behaves classically.” The state’s quantum nature
may, however, still be revealed by another choice of
observables. In this view, there is no such thing as “the”
nonclassical nature of a state, but rather the degree to
which various measurements can reveal its quantum nature,
notably through interference terms. The relation of this
analysis to the independent notion of optical (non)classi-
cality of the states of a bosonic quantum field mode will be
discussed below.
As will become clear below, for our purposes, it is not so

much the size of the coherences as their location which
is important. To evaluate how far from the diagonal the
coherences occur, we write P ¼ Trρ2 for the purity, and
consider the probability density on the ða; a0Þ plane:

μða; a0Þ ¼
X
i;j

jhaijρjajij2
P

δða − aiÞδða0 − ajÞ:

It describes the spatial repartition of the matrix elements
of ρ and in particular of its coherences. We define the
A-coherence scale CAðρÞ of ρ via

C2AðρÞ ¼
X
i;j

ðai − ajÞ2
jhaijρjajij2

P

¼
Z

ða − a0Þ2μða; a0Þdada0;

which is the variance of the eigenvalue spacings of A so
that, when CAðρÞ is large, there are coherences far from the
diagonal: CAðρÞ determines the scale on which the coher-
ences of ρ live. It is easy to check that for pure states
C2AðρÞ ¼ 2ðΔAÞ2. A simple calculation shows, furthermore,
C2AðρÞ ¼ P−1Tr½ρ; A�½A; ρ�, an expression valid also when A
has continuous spectrum. We stress that CA is not a measure
of the A coherence of the state; it does not establish “how
much” coherence there is, but “where” it is. For example,
two states jaii þ jaji and jaii þ jaki have off-diagonal
matrix elements of the same size, and in this sense the same
“amount” of coherence, but their A-coherence scale is
proportional to jai − ajj, respectively jai − akj, and can
therefore strongly differ [10].
Quadrature coherence scale-quadrature quasicoherence.—

We consider a state ρ of a single-mode field, characterized
by an annihilation-creation operator pair a, a†. We are
interested in the coherence scale of its quadratures and
define, in analogy with what precedes, its quadrature
coherence scale (QCS) CðρÞ through

C2ðρÞ ¼ 1

2P
ðTr½ρ; X�½X; ρ� þ Tr½ρ; P�½P; ρ�Þ; ð2Þ

where X¼½ða†þaÞ= ffiffiffi
2

p �;P¼½iða†−aÞ= ffiffiffi
2

p �. With Xθ ¼
cos θX þ sin θP, Pθ ¼ − sin θX þ cos θP, one has also

C2ðρÞ ¼ 1

2P
ðTr½ρ; Xθ�½Xθ; ρ� þ Tr½ρ; Pθ�½Pθ; ρ�Þ; ð3Þ

so that C2ðρÞ is the average coherence scale (squared) of
any pair of conjugate quadratures. Equation (2) implies

C2ðρÞ ¼ 1

2P

�Z
ðx − x0Þ2jρðx; x0Þj2dxdx0

þ
Z

ðp − p0Þ2jρðp; p0Þj2dpdp0
�
: ð4Þ

Here, ρðx; x0Þ [respectively, ρðp; p0Þ] is the operator kernel
of ρ in the X representation (respectively, P representation).
It follows from (3) and (4) that a large CðρÞ implies that for
every pair ðXθ; PθÞ of conjugate quadratures, at least one
has a large coherence scale. Conversely, a small CðρÞ
implies that the off-diagonal coherences of all quadratures
must be small away from the diagonal. We stress that no
state ρ can be Xθ or Pθ incoherent in the sense that ρ cannot
be diagonal in the corresponding representation [21].
Mixed states can nevertheless have an arbitrarily small
QCS, as we will see below. For pure states, (2) implies
C2ðρÞ ¼ ðΔXÞ2 þ ðΔPÞ2, the so-called total noise of ρ [27].
It follows that, on pure states, the QCS is larger than 1; it
reaches its minimal value of 1 only on the coherent states
jαi ¼ DðαÞj0i, where j0i is the vacuum state and DðαÞ ¼
expðαa† − α�aÞ. For optical cat states jψαi∼ðjαiþj−αiÞ,
a simple computation [21] yields Cα ≃ jαj ðjαj ≫ 1):
“large” cats have a large QCS in agreement with the
observation that ραðx; x0Þ ¼ hxjψαihψαjx0i has large off-
diagonal elements in the neighborhood of x ¼ −x0 ¼ �α
if α is real. We will refer to states for which CðρÞ ≤ 1 as
quadrature quasi-incoherent states. In fact, we will see
below that C2 has the particular feature of providing a
measure of optical nonclassicality. It follows from [28,29]
that the right hand side of (2) can be expressed in terms of
the Wigner function WðαÞ or the characteristic function
χðξÞ [30,31] as follows:

C2ðρÞ ¼ kjξjχk22
kχk22

¼ 1

4

k∇Wk22
kWk22

: ð5Þ

Here, with ξ, α ∈ C, k · k2 stands for the L2 norm, meaning,
for example, kWk22 ≔

R jWj2ðαÞd2α and

χðξÞ ¼ TrρDðξÞ;

WðαÞ ¼ 1

π2

Z
χðξÞ expðξ�α − ξα�Þd2ξ:
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The definition (2) and expression (5) carry over to multi-
mode systems by summing over a complete set of con-
jugate quadratures.
For a centered Gaussian state ρG with covariance matrix

V ¼ ð 2TrρX2

TrρðXPþPXÞ
TrρðXPþPXÞ

2TrρP2 Þ, one finds [21]:

C2G ¼ C2ðρGÞ ¼ ½ðΔXÞ2 þ ðΔPÞ2�P2 ¼ 1

2
TrV−1: ð6Þ

It follows that Gaussian mixed states can have an arbitrarily
small QCS. This can happen even if the total noise is very
large. One notes for example in Fig. 1 that the coherences
of the thermal state with mean photon number n̄ ¼ 5 are
concentrated along the diagonal. This reflects the fact that
for thermal states CðρthÞ ¼ ð1þ 2n̄Þ−1=2, which follows
from (6). We note that for Gaussian states 4C2G coincides
with the sum of the quantum Fisher information of two
conjugate quadratures [21], which is known to provide a
useful lower bound for proposed measures and monotones
of quantum macroscopicity [10] and nonclassicality [32].
On non-Gaussian states, however, the two quantities can
differ greatly (for an example, see [29]).
As an example of non-Gaussian states we consider the

family of even states, with M a positive integer:

ρM ¼ 1

M

XM
k¼1

j2kih2kj:

One has CðρMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2M þ 3

p
[29] and Fig. 1 shows that,

indeed, the coherences have a large off-diagonal branch
that can be checked to grow as

ffiffiffiffiffiffiffi
2M

p
, as expected. Since

PM ¼ M−1, this shows that very strongly mixed states can
have a very large QCS. Other examples of this phenomenon
are the strongly squeezed thermal states for which a very
small purity can be compensated by a very large total noise
[see (6) and [21] ].
Environment induced quadrature coherence scale

loss.—We consider a field weakly coupled to a thermal
bath through the standard master equation in Lindblad form
[1,3,6,33,34]

d
dt

ρðtÞ ¼ −iω½a†a; ρðtÞ� þ 1

2
γf½aρðtÞ; a†� þ ½a; ρðtÞa†�g

þ 1

2
δf½a†ρðtÞ; a� þ ½a†; ρðtÞa�g;

where γ > δ ≥ 0. This dynamics converges to a thermal
state with mean photon number n̄∞ ¼ δtR, where tR ¼
ðγ − δÞ−1 is the relaxation time. Purity evolution is deter-
mined by _PðtÞ ¼ ð1=tRÞ½1 − ð2n̄∞ þ 1ÞC2ðtÞ�PðtÞ. Using
the affine approximation to PðtÞ at small t shows the purity
half time

τP ≈
1

2

1

ð2n̄∞ þ 1ÞC20 − 1
tR;

provided C20 ¼ C2ð0Þ > 1: the purity half-life decreases as
C−20 when the QCS is large. This approximation gives
the right order of magnitude [21] and reduces to the
known result for pure states [2,3,5]. Simultaneously with
the purity loss, there is QCS loss. Indeed, the time evolution
of the QCS, and in particular its sharp initial drop (Fig. 2),
can be explained by analyzing the differential equation
for CðtÞ [21]:

_CðtÞ ¼ 1

2tR
½1 − κðtÞð2n̄∞ þ 1ÞC2ðtÞ�CðtÞ; ð7Þ

with

κðtÞ ¼ ½ð⟪ξ4⟫t=⟪ξ2⟫2
t Þ − 1�;

⟪ξ2k⟫ ¼
Z

jξj2kðjχðξÞj2=kχk22Þdx

Hence, the half-life τC of the QCS is given approximately
by (Fig. 2)

τC ≈ −
1

2

Cð0Þ
_Cð0Þ ¼

1

κ0ð2n̄∞ þ 1ÞC20 − 1
tR: ð8Þ

where κ0 ¼ κð0Þ. For Gaussian states, more precise estimates
can be obtained from a more detailed computation [21]:
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FIG. 1. Plots of ρðx; x0Þ. Left panel: thermal state with n̄ ¼ 5.
Right panel: even state ρM, with M ¼ 4, n̄ ¼ 5.

FIG. 2. Evolution of CðρtÞ under the dynamics (7) of an initial
Fock state jni (n ¼ 5), a squeezed thermal state [V ¼ 1.8ðe−2r

0
0
e2rÞ,

r ¼ cosh−1ð19.8Þ=2 ≈ 1.84], an optical cat state jψαi ∼ ðjαi þ
j − αiÞ (α ≈ 2.24), and an even state ρM (M ¼ 4). Cð0Þ ¼ ffiffiffiffiffi

11
p

for
all states shown. n̄∞ ¼ 1. tR ¼ 1. The table show the numerically
exact value of the half-life τC of the QCS and its approximation
obtained by Eq. (8) for the first three columns and by Eq. (9) for
the Gaussian state.
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τP;G ≈
2κ0 − 1

½ð2n̄∞ þ 1ÞC20 − 2κ0 �κ0
tR;

τC;G ≈
3

κ0ð2n̄∞ þ 1ÞC20 − 4
tR: ð9Þ

Comparing (8) to (9), one sees that for the same value
of C0 ≫ 1 and κ0, a Gaussian state is less sensitive to
decoherence than the non-Gaussian states considered above.
A further calculation [21] permits us to determine the time
τ1;G at which the state becomes quasi-incoherent, i.e.,
Cðτ1;GÞ ¼ 1. It is, remarkably, to leading order in C−20 ,
independent of the QCS:

τ1;G ≈
�
ln

�
κ0ð2n̄∞ þ 1Þ

κ0ð2n̄∞ þ 1Þ − 1

�
−

1

C20κ0ð2n̄∞ þ 1Þ
�
tR:

These results show in all generality that the purity loss and the
destruction of the large-scale quadrature coherences of any
initial state are determined by the temperature of the envi-
ronment and by two parameters characteristic of the initial
state: the QCS C0 and κ0. They generalize the known results
for optical cat states [2–5] to all pure and mixed states.
Effects of a large QCS.—The expressions in (5) show

that a large value of the QCS corresponds to a large spread
of the characteristic function and to the existence of small
scale structures in the Wigner function [28,29]. Indeed,
kjξjχk22=kχk22 is the mean of jξj2 with respect to the
probability density jχðξÞj2=kχk22. Hence, a large value of
the QCS corresponds to a characteristic function with a
wide spread in at least some directions in the ξ plane, a
manifestation of the well known link between the character-
istic function and the coherences [35]:

χ

�
−
μ sin θffiffiffi

2
p ;

μ cos θffiffiffi
2

p
�

¼ Tr expðiμXθÞ

¼
Z

ρðpθ; pθ þ μÞdpθ:

On the other hand, a large QCS implies the gradient ofW is
large, which means the graph ofW must have steep slopes,
at least in some places of the phase plane, a signature either
of oscillations or of sharp peaks [15,29]. For Gaussian
states, this phenomenon manifests itself in that the variance
of the probability distribution of one of the quadratures is
of order C−2 [21]. A faithful reconstruction of the Wigner
function through quantum tomography therefore requires
great accuracy when C ≫ 1. States with a large QCS are
therefore hard to observe. That it is generally difficult to
measure optical cat states and analogous states in other
systems, when their components have a “macroscopic”
separation, was proven in [19]. We have here established
the same result for all mixed or pure states of a bosonic
quantum field with a large QCS.

To see how a large coherence scale can lead to strong
interference effects, we consider the states ρM (Fig. 1) and
choose A ¼ X and B ¼ N ¼ a†a and write

pNðnÞ ¼ pdiag;l
N ðnÞ þ

Z
jx0−xj≥l

hx0jnihnjxiρðx; x0Þdxdx0;

in analogy with (1). Here,

pdiag;l
N ðnÞ ¼

Z
jx0−xj≤l

hx0jnihnjxiρðx; x0Þdxdx0: ð10Þ

Contrary to when A has a discrete spectrum, as in (1), one
cannot sharply isolate the diagonal part of the state.
Nevertheless, as the left panel of Fig. 3 illustrates, it is
the contribution of the coherences far from the diagonal
that generate the sharp oscillations or fringes in pNðnÞ. In
fact, it is clear (see Fig. 3) that the term pdiag;l

N ðnÞ shows a
mildly oscillating behavior for l ¼ 1, which is, as l grows,
enhanced by the interference terms to yield pNð2kÞ ¼ 1=M
(constructive interference), pNð2kþ 1Þ ¼ 0 (destructive
interference). That the dynamical loss of large-scale coher-
ences leads to a sharp decrease of this interference effect
is illustrated in the right panel of Fig. 3: at the QCS half
life τC ¼ 0.033 of the state, the interferences are already
considerably suppressed.
Quadrature coherence scale and optical (non)

classicality.—Let Ccl be the set of optical classical states,
i.e., all mixtures of coherent states [36]. A number of
witnesses, measures, and monotones of optical nonclassi-
cality have been designed [29,32,36–59] to identify non-
optical classical states and to quantify their degree of
nonoptical classicality. Those quantities are often hard to
compute, to measure, or to give a clear physical meaning.
It is, in particular, not evident how they relate to standard
manifestations of specifically quantum behavior such as
coherence and interference, nor how they evolve when
coupled to a thermal bath. We show here a quantitative link
between optical (non)classicality, the presence of coher-
ences, and (fast) decoherence. Our analysis is based on
the optical nonclassicality distance dðρ; CclÞ defined in [29]
using a quantity denoted SoðρÞ which measures the
sensitivity of the state to operator ordering. One of its
expression is SoðρÞ ¼ 1

4
ðk∇Wk22=kWk22Þ. In view of (5),

FIG. 3. Full red line: values of pNðnÞ ¼ 1=M for the even state
ρM with M ¼ 4 at t ¼ 0. Left panel: values of pdiag;3.3

N (dotted
blue line) and pdiag;1

N (dashed purple line) as defined in (10), both
at t ¼ 0. Right panel: values of pNðnÞ at t ¼ 0.01 (dashed green
line) and t ¼ 0.033 ¼ τC (dotted blue line).
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this means C2ðρÞ ¼ SoðρÞ. In other words, the QCS
provides a new physical interpretation of the ordering
sensitivity in terms of quadrature coherences, and the
associated physical phenomena described above. In view
of the bound

CðρÞ − 1 ≤ dðρ; CclÞ ≤ CðρÞ ð11Þ

proven in [29], CðρÞ is a good estimate of the distance
between ρ and the optical classical states when CðρÞ ≫ 1.
Hence, the states far from the optical classical states are
those with quadrature coherences far from the diagonal. In
view of what precedes, they are the most fragile to
decoherence. Conversely, when ρ ∈ Ccl, dðρ; CclÞ ¼ 0
and it follows from (11) that CðρÞ ≤ 1: optical classical
states are quadrature quasi-incoherent. Finally, the smaller
the QCS of ρ, the closer it is to the optical classical states.
This link between coherence and optical nonclassicality is
specific to the quadrature coherences. It is, for example, not
present in the a†a coherence of the state.
Conclusion.—We introduced, for any bosonic state, its

QCS, a measure of how far from the diagonal its quadrature
coherences lie. We established that the states with a large
QCS are strongly optically nonclassical, hard to observe, and
very sensitive to environmental decoherence. These results
generalize the known fast decoherence of large optical cat
states [2–6] to all pure or mixed states with a large QCS.
One may thus legitimately argue that the QCS provides a

measure of quantum macroscopicity. Indeed, when the
QCS is large, the state is “strongly nonclassical” in the
sense that it is far from the optical classical states and its far
off-diagonal coherences can be understood as a form of
“macroscopicity.” Also, when the QCS is small, the states
are close to the optical classical states and in this sense have
a low degree of “quanticity.” Our results thus strongly
support a suggestion in [32], were it is surmised that there
may be a link between optical nonclassicality and macro-
scopic quantum effects.
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