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We consider a model for driven particulate matter in which absorbing states can be reached both by
particle isolation and by particle caging. The model predicts a nonequilibrium phase diagram in which
analogs of hydrodynamic and elastic reversibility emerge at low and high volume fractions respectively,
partially separated by a diffusive, nonabsorbing region. We thus find a single phase boundary that spans the
onset of chaos in sheared suspensions to the onset of yielding in jammed packings. This boundary has the
properties of a nonequilibrium second order phase transition, leading us to write a Manna-like mean field
description that captures the model predictions. Dependent on contact details, jamming marks either a
direct transition between the two absorbing states, or occurs within the diffusive region.
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Nonequilibrium phase transitions into absorbing states
are of fundamental interest and relevant to applications such
as spreading of infectious disease and reaction-diffusion
problems [1,2]. Driven granular materials, both semidilute
(volume fraction ϕ ≈ 0.1) and jammed [ϕ > ϕJ ≈ 0.64 (in
3D)], have proven to be useful experimental systems in
which to study such transitions [3,4], but the behavior close
to ϕJ itself is unclear.
In non-Brownian suspensions under oscillatory

shear, nonhydrodynamic particle contacts arise above a
ϕ-dependent critical strain amplitude γc, moving the system
from a Stokesian-reversible state to a chaotic, fluctuating
one [3,5–9]. Meanwhile, jammed packings exhibit a
transition from elastic reversibility to plastic cage defor-
mation at a γc associated with yielding [4,10–15]. The order
parameter for both transitions may be chosen as the fraction
A of particles that are “alive,” that is, those whose position
changes after successive shear cycles at steady state. For
γ > γc, time-irreversible particle contacts (ϕ < ϕJ) and
plastic rearrangements (ϕ > ϕJ) render the systems active:
they have diffusion coefficient D > 0, with A > 0 and all
particles spending part of the time alive. Below γc the
systems reach absorbing states with A ≃ 0 and D ¼ 0 due
to hydrodynamic (elastic) reversibility when ϕ < ϕJ
(ϕ > ϕJ). In absorbing states most particles are never
alive, but A need not strictly vanish: isolated per-cycle
displacements are permitted provided the system is trapped
in a finite basin of the phase space [16].
The nonconserved order parameter A carried by a

conserved total number of particles, and the existence of
multiple symmetry-unrelated absorbing states, should place
these systems in the Manna class of nonequilibrium second
order phase transitions [17–19]. This is borne out below ϕJ
in experiments [6], molecular dynamics simulations [20],

and in simplified models in which shear is mimicked by
displacing overlapping particles [6,8,21]. Above ϕJ, how-
ever, experimentalists have reported both second [4] and
first [22] order behavior, with simulations [20,22,23]
consistently predicting the latter. First order behavior could
be due to long-range elastoplastic effects present only
above ϕJ and not included in our model introduced below.
Setting this aside, and the differing governing forces on
either side of ϕJ (hydrodynamic vs elastic), the two
transitions between absorbing and diffusive states share
a number of features including a diverging timescale for
reaching the steady state [3,4,24,25] and self-organization
[26,27] (including into hyperuniform states [7,8,28,29]).
An important question thus emerges about whether, how,
and where the absorbing-state transitions that mark the
absorbing-diffusive boundary meet as ϕJ is approached
from either side.
Recent computational studies of soft spheres under

cyclic shear address this question [20,23], revealing a
convoluted nonequilibrium phase diagram whose interpre-
tation within the context of absorbing-state transitions is
hampered by complexities including point vs loop revers-
ibility [30,31], elasticity [32], and history dependence
in ϕJ [23]. To make progress near ϕJ, simplified models
building upon those of Refs [6,8,21] are warranted. Here
we present such a model for driven particulate matter in
which particles cease to be alive when they are either
contact-free or jammed. The former serves as an analog of
hydrodynamic reversibility; the latter elastic reversibility.
Our model predicts a nonequilibrium phase diagram
exhibiting two distinct absorbing regions on either side
of ϕJ and an intermediate diffusive region. The absorbing-
diffusive transitions above and below ϕJ show evidence
of belonging to the Manna class, while ϕJ itself can,
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dependent on model parameters, mark a direct transition
between absorbing regions, or occur within the diffusive
region. A modified mean-field Manna description predicts
the features of the phase diagram.
Model description.—The starting point for our model is a

deterministic variant of that proposed by Tjhung and
Berthier (TB) [8,33], a member of the Manna class.
Random configurations of N particles with radii normally
distributed about σ (variance 0.2σ) are generated in a box of
length L. At each discrete time step t; tþ δt; tþ 2δt;…, we
check for overlapping particles. Particles with no over-
lapping neighbors (coordination number z ¼ 0) are dead,
and are not moved from one time step to the next. Particles
with z > 0 (of which there are NA) are alive and are
displaced by xiðtþ δtÞ ¼ xiðtÞ þ Δ

Pz
j¼1 nij, where Δ is

expressed in units of σ, and nij are unit vectors pointing to
particle i from each contacting particle j. We write the
mean squared displacement as MSD¼h½xiðtÞ−xiðt0Þ�2i¼
Dt, where h…i averages over particles. The control
parameters are the kick distance Δ and the density ϕ,
given by

P
N
i¼1 2σi=L in 1D and

P
N
i¼1 πσ

2
i =L

2 in 2D. Cases
that reach A≡ NA=N ≃ 0 and D ¼ 0 after some number of
steps t represent absorbing states, while those with A > 0,
D > 0 in steady state do not. Notwithstanding differences
in details, these dynamics produce a nonequilibrium
absorbing-diffusive phase transition of the same universal-
ity class as TB.

We next introduce a caging mechanism chosen so that
jammed particles become dead, describing first a 1D
variant for simplicity. As above, particles with z ¼ 0 are
stationary. Particles that have z ¼ 2, i.e., contacts to their
left and right, are now also defined as dead on the grounds
that they are locally in a state of isostaticity. A related
constraint was imposed in a previous study of contact
processes on a lattice [34]. Only particles with z ¼ 1 (or
indeed z > 2, which occurs at small t due to the random
initialization) are alive and displaced at each δt as above.
These dynamics are sketched in Fig. 1(a).
For caging in 2D, our criterion stipulates the location of

contacting neighbors. A particle is caged and therefore dead
if its center lies inside the polygon formed by connecting the
centres of its overlapping neighbors [Fig. 1(b)]. This implies
that a particlemust have z ≥ 3 in order to be jammed, though
this coordination alone is not necessarily sufficient. An
average coordination of dþ 1 represents the minimal value
reachable in a packing of frictional particles [35]. To prevent
large overlaps of caged particles, we introduce a hard core of
radius 0.9σi for particle i, see the dotted circle in Fig. 1(b).
Any particlewith a neighbor inside this hard core is declared
alive, regardless of the arrangement of its other contacts. In
addition to caged particles, those with z ¼ 0 are dead [36].
All other particles are alive and are displaced at each δt as
above. We run the above dynamics for systems of N ¼
5 × 103 particles [37] for t ¼ Oð105Þ time steps, varying Δ
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FIG. 1. Model for driven particulate matter that combines particle isolation and caging. Model definition in 1D (a) and 2D (b).
Contact-free particles and caged particles are dead (black circles) and immobile; all other particles are alive (red circles) and move
distance Δ along nij (dotted arrows) each time step. (c) Variation, with number of steps t, of: [i]–[ii] A (fraction of particles that are
alive), with dotted lines showing example fits to A ¼ α expð−t=τÞ þ κ; [iii] average coordination number Z; [iv] mean squared
displacement (grey line shows exponent 1, so that MSD ¼ Dt); at different densities ϕ and step sizeΔ ¼ 0.03. Colors in [iii]–[iv] follow
the legends in [i]–[ii]; (d), (e) Nonequilibrium phase diagrams showing (d) Z and (e) A as functions of density ϕ and step size Δ,
measured after N ¼ 2.5 × 105 steps; dotted lines (black and red) are sketched to highlight phase boundaries, black points represent
values strictly 0.

PHYSICAL REVIEW LETTERS 124, 088004 (2020)

088004-2



and ϕ systematically and taking at least 30 realizations for
each case. Discussed in the following are 2D results.
Model results.—Shown in Fig. 1(c) are plots of the

evolution with t of the fraction of alive particles A, the
average coordination Z≡ hzi, and the MSD, for Δ ¼ 0.03
and ϕ ¼ 0.78–0.92. We find three distinct behaviors.
Absorbing state I (ABI): at ϕ < 0.81, initially randomly

positioned overlapping particles lose contact and A, D, and
Z decrease with time, eventually reaching zero and marking
entry into an absorbing state. We identify this contact-free
state as an analog of the hydrodynamically reversible state
reached in cyclicly sheared suspensions below γc [5], in
which there are no time-irreversible interactions in the
system. Note that period multiplying is not observed in
this region.
Absorbing state II (ABII): at ϕ > 0.87, A decreases with

time as particles form ubiquitous jammed cages that result
in Z ≥ 3 and D ¼ 0 after long times. In contrast to ABI,
here A does not reach zero but rather a steady value of order
10−3. Snapshots of the simulation reveal rattler particles
[38] occupying vacancies in an otherwise stationary sys-
tem, indicating that the system is indeed in an absorbing
state. We identify this as the elastic reversibility region [11].
Here there are time-irreversible interactions (i.e., particle-
particle contacts), but their spatial arrangement leads to
jamming at the per-particle level. (Absorbing states of this
kind cannot emerge under TB.)
Diffusive (D): for intermediate ϕ, absorbing states are not

reached, but rather after some transient the system reaches
finite-A steady states. These are distinguished from those in
ABII by the MSD [Fig. 1(c)[iv] ]: clearly D > 0 here and
the system is diffusive.
At Δ ¼ 0.03 our model thus predicts two types of

absorbing state separated by a diffusive region, exhibiting
an ABI-D-ABII sequence with increasing ϕ. ABI and ABII
shareD ¼ 0 but are distinct in their mode of absorption: the
former has Z ¼ 0, the latter Z ≥ 3. In the diffusive region D
we find steady states with 0 < Z < 3 and A;D > 0.
Nonequilibrium phase diagram.—In Figs. 1(d) and 1(e)

we present phase diagrams in the (ϕ, Δ) plane for Z and A,
respectively, measured at steady state. The Δ ¼ 0.03
behavior is retained for all Δ ≥ 0.01, with a broadening
D region as Δ is increased. For Δ < 0.01, we instead find
that Z increases over a narrow range of ϕ, with order
parameter A ¼ Oð10−2Þ throughout. This implies direct
ABI-ABII jamming transitions (with no intermediate
D region) at ϕJ ≈ 0.84 for Δ < 0.01 [red dotted line,
Fig. 1(e)]. The properties and location of the ABI-D-
ABII junction are examined further below.
We show next that the absorbing-diffusive boundary

displays features of a second order nonequilibrium phase
transition on both sides of ϕJ. Focusing again onΔ ¼ 0.03,
we find that close to the boundary [which occurs at ϕcðΔÞ]
A can be written as A ¼ k1jϕ − ϕcjβ for both the ABI-D (I)
and D-ABII (II) transitions, Figs. 2(a) and 2(b). This is

consistent with experiments [3,4] but not with the
numerics of Ref. [39] that indicate a first order transition.
We find ϕI

c ¼ 0.812, ϕII
c ¼ 0.872, βI ¼ 0.63� 0.02, and

βII ¼ 0.67� 0.03. Following Ref. [3] we write A ¼
α expð−t=τÞ þ κ [examples shown in dotted lines,
Figs. 1(c)[i]–1(c)[ii] ] leading to a relaxation time τ for
the process. τ diverges at ϕI;II

c according to τ ¼ k2jϕ −
ϕcj−νk [Figs. 2(c) and 2(d)], with νIk ¼ 1.24� 0.04 and

νIIk ¼ 1.21� 0.03. Reference [2] gives the exponents as
β¼ 0.639 and νk ¼ 1.225 [40]. We define a structure factor
according to [41] SðkÞ¼ð1=ϕL2Þ½ðPiσ

2
i cosðxi ·kÞÞ2 þ

ðPiσ
2
i sinðxi ·kÞÞ2� for wave vector k and find that long

wavelength density fluctuations are suppressed on the ABI-
D and D-ABII boundaries [Figs. 2(e) and 2(f)]. We defer a
check for strict hyperuniformity [42] (as done by TB for
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FIG. 2. Properties of the phase boundaries. (a), (b): the fraction
of alive particles A increases continuously from zero at ϕI;II

c with
Δ ¼ 0.03. Circles are model data; lines are fits to A ¼ k1jϕ −
ϕcjβ with (a) ϕI

c ¼ 0.812, βI ¼ 0.63, and (b) ϕII
c ¼ 0.872,

βII ¼ 0.67. The relaxation time τ diverges at (c) ϕI
c for ABI-D

with exponent νk ¼ 1.24 and at (d) ϕII
c for D-ABII with

νk ¼ 1.21. Points are model data (circles are absorbing side of
boundary; squares are diffusive side); lines are fits to
τ ¼ k2jϕ − ϕcj−νk . Long wavelength density fluctuations are
suppressed close to ϕI

c (e) and ϕII
c (f). At the ABI-ABII boundary

(Δ ¼ 0.001), A remains Oð10−2Þ (g) and Z increases discontin-
uously from 0 to ≈2.5 (h).
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ABI-D) to future work. Together these results show that the
ABI-D and D-ABII transitions are consistent with the
Manna class. The direct ABI-ABII transition exhibits some
similar features [τ diverges at ϕJ; SðkÞ is suppressed at
small k] but is distinct in that A remainsOð10−2Þ [Fig. 2(g)]
and there is a discontinuity in Z (though no signature in the
radial distribution function) implying first order behavior
[Fig. 2(h)].
Mean-field description.—For a system of alive and

dead particles with densities ρA and ρB, respectively,
and ϕ ¼ ρA þ ρB, we write a modified mean-field
Manna model (following [43,44] and neglecting noise
[45]) as:

_ρA ¼ ∇2ρA þ αρAðϕ − ρAÞ − βρAð1 − ϕÞ − νρAϕ
2 ð1Þ

with _ϕ ¼ ∇2ρA and α; β; ν > 0. Here α represents the
activation of dead particles by interaction with alive
neighbors (related to Δ above), β represents isolated
death, and ν accounts for death due to caging [34]. The
quadratic ϕ dependence mimics our 1D model in which
particles require two neighbors for death; in 2D such a
leading-order term is expected to emerge upon coarse
graining even if not present initially, so we retain it in
our minimal description. Letting ϕ ¼ ϕ̄þ ψ and ρ ¼ ρA,
then letting ∇2 ¼ _ρ ¼ _ψ ¼ ψ ¼ 0, leads to an expression
for the critical driving rate

αcðϕ̄Þ ¼
β þ νϕ̄2

ϕ̄
− β ð2Þ

beyond which the state at ρ ¼ 0 is linearly unstable to
growth of activity. This expression predicts a U-shaped
boundary of critical driving rates [Figs. 3(a) and 3(b)]
qualitatively consistent with the phase diagram predicted
by our model, Fig. 1(e). Importantly, Eq. (2) predicts
that the low-α extremum of the boundary can lie above,
on, or below the α ¼ 0 axis, dependent upon the caging
rate ν. When it lies above, a direct ABI-ABII jamming
transition is expected. Otherwise the ABI and ABII
states remain separated by a diffusive phase that
includes the jamming point. This scenario implies that,
in the (ϕ, Δ) phase diagram [Fig. 1(e)], the ABI-D-ABII
junction should move to smallerΔ on decreasing the rate of
caging. Alternatively, holding Δ fixed (below 0.01)
while inhibiting caging should cause the ABI-ABII tran-
sition to be replaced by a ABI-D-ABII sequence involving
two phase transitions.
To test this idea we return to the simulation model and

introduce a thin outer shell (width χ ∼ 10−4σ) to the
particles. We stipulate that caged death requires contacting
neighbors to simultaneously form an enclosed polygon, as
above, and each have overlap distance> χ [Fig. 3(c)]. Now

an isolated particle can be brought to life by any contact (as
above), whereas an alive particle can only achieve caged
death by contacts of sufficient overlap. With this constraint,
increasing χ should inhibit caged death and is thus expected
to have the same effect on the phase diagram as decreas-
ing ν.
Indeed, we find that on fixing Δ ¼ 0.001 and increas-

ing χ we transit from the ABI-ABII behavior in
Fig. 1(e) to ABI-D-ABII behavior, shown in Fig. 3(d).
Here the solid black line, clearly within the diffusive
region for large χ, marks points where Z ¼ 3. While the
exit from ABI appears to occur at a χ-independent ϕ,
the additional requirement to exceed χ keeps particles
alive so that larger ϕ must be reached to enter ABII. As
a result, the ABI-D-ABII junction in Fig. 1(e) passes
downward through the Δ ¼ 0 axis, so that jamming,
occurring at small Δ, no longer marks a sharp absorb-
ing-absorbing transition but instead occurs over a broad-
ening range of ϕ, within which the system is diffusive.
Together, our model and the mean field expression
suggest that jamming can manifest as the meeting of
two distinct absorbing states (with ϕJ dependent upon
the governing dynamical rules), or may occur within the
diffusive region.
Conclusion.—We have presented a model of driven

granular materials that places absorbing-state transitions
in the vicinity of the jamming point within the Manna class.
The model predicts that the jamming point ϕJ can either
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Here Δ ¼ 0.001 and the black line indicates the contour where
Z ¼ 3, the minimum for system wide caging.

PHYSICAL REVIEW LETTERS 124, 088004 (2020)

088004-4



mark a transition between distinct types of absorbing state
or can lie within a diffusive phase that separates such states.
An important open question is the extent to which more
detailed aspects of this scenario are universal. In particular,
comprehensive reconciliation of recent findings [20,23]
with the nonequilibrium phase diagram proposed here may
require the inclusion in our model of spatially nonlocal
effects such as elastoplasticity and long-range hydrody-
namic interactions [32], perhaps guiding the development
of new mean-field theories for amorphous materials.
Further work is warranted on the ABI-D and D-ABII
boundaries that correspond to conditions of maximal data
compressibility [46] and mechanical memory storage
[47,48], respectively, while the fundamental understanding
of driven transitions between contact-free, diffusive, and
jammed states is relevant to suspension flow control [49]
and soil liquefaction [50].
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