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Quantum spin liquids (QSLs) form an extremely unusual magnetic state in which the spins are highly
correlated and fluctuate coherently down to the lowest temperatures, but without symmetry breaking and
without the formation of any static long-range-ordered magnetism. Such intriguing phenomena are not only
of great fundamental relevance in themselves, but also hold promise for quantum computing and quantum
information. Among different types of QSLs, the exactly solvable Kitaev model is attracting much
attention, with most proposed candidate materials, e.g., RuCl3 and Na2IrO3, having an effective S ¼ 1=2
spin value. Here, via extensive first-principles-based simulations, we report the investigation of the Kitaev
physics and possible Kitaev QSL state in epitaxially strained Cr-based monolayers, such as CrSiTe3, that
rather possess a S ¼ 3=2 spin value. Our study thus extends the playground of Kitaev physics and QSLs to
3d transition metal compounds.
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Enormous efforts have been made to realize quantum
spin liquids (QSLs) since the pioneering work of Anderson
and Fazekas in the 1970s [1,2]. Models with typical ingre-
dients, such as geometrical frustration and antiferromag-
netism (AFM), have been extensively studied [3]. Recently,
the two-dimensional (2D) Kitaev model defined on a
honeycomb lattice has attracted much attention, since its
ground state is exactly proved to be QSL with Majorana
fermion excitations [4]. Later work by Jackeli and
Khaliullin demonstrated that such a model can be realized
in certain transition metal compounds with strong spin-
orbit coupling (SOC) [5]. Measurements also observed
proximate Kiteav QSL in candidate materials, such as
α-RuCl3 [6–8] and ðNa1−xLixÞ2IrO3 [9,10], which all have
a spin state of effective S ¼ 1=2, as well as a layered
structure with edge-sharing octahedras and strong SOC
from 4d or 5d transition metals. However, to the best of our
knowledge, unambiguous demonstration of the Kitaev QSL
is still lacking and a zigzag ordered state tends to form in
the aforementioned materials at very low temperatures.
Possible reasons are that (i) the structure distorts away from
ideal honeycomb lattice and (ii) the relative strengths of
isotropic exchange coupling and Kitaev interaction play a
role in the forming of ground states [11,12]. It is thus
necessary to search for other candidates and/or find a
way to tune magnetic interactions, in order to create QSL
systems.

Recently, atomic layers made of CrI3 and CrGeTe3
have been synthesized and found to be ferromagnetic,
which resulted in a major surge of researches dedicated to
two-dimensional magnetism [13,14]. CrI3 and CrGeTe3
share similarities in their crystal structure with α-RuCl3
and Na2IrO3; i.e., they all have a honeycomb lattice and
edge-sharing octahedra. On the other hand, CrI3 and
CrGeTe3 have a higher spin state than α-RuCl3
and Na2IrO3, namely, S ¼ 3=2 vs S ¼ 1=2. At first
thought, the FM nature and large S value, as well as
the light SOC associated with Cr, seemingly exclude CrI3
and CrGeTe3 from being Kitaev QSL candidates.
However, one of our recent works [15] hints that these
systems exhibit finite Kitaev interaction that arises from
heavy ligands of I/Te and thus may in fact be promising
to find QSL. As a matter of fact, it is important to know
that (1) such previous work adopted the general matrix
form of the Hamiltonian

H ¼ 1

2

X
i;j

Si · J ij · Sj þ
X
i

Si ·Aii · Si; ð1Þ

where the first sum runs over all nearest neighbors and
the second sum runs over all single sites, and (2) the J X,
J Y, and J Z matrices, respectively, have the following
forms,
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implying that Eq. (1) can be rewritten as

H¼1

2

X
i;j

fJSi ·SjþKSγi S
γ
jþΓ1ðSαi Sβj þSβi S

α
j Þ

þΓ2ðSγi Sαj þSγi S
β
j þSαi S

γ
jþSβi S

γ
jÞgþ

X
i

AzzS
z
i S

z
i ; ð2Þ

where fα; β; γg ¼ fY; Z; Xg, fZ;X; Yg, and fX; Y; Zg for
the X, Y, and Z bonds, respectively. Note that the global
fXYZg basis and the X, Y, and Z bonds are shown in Fig. 1,
and that only the Azz component is finite in the A matrix
when expressed in the global fxyzg basis—which explains
why only Azz appears in the single ion anisotropy (SIA)
term. Interestingly, Eq. (2) characterizes a typical JKΓ
model [16] but with an with extra SIA term. Consequently,
Eq. (2) represents what we coin here as a JKΓA model.
Equations (1) and (2) have previously naturally repro-

duced and explained, in Ref. [15], the distinct magnetic
behaviors of CrI3 and CrGeTe3 (that is, Ising vs Heisenberg
behavior, respectively) [19,20]. The approach to induce
Kitaev interaction by means of heavy ligands [15] is also
evidenced by a subsequent work [21] that proposes
achieving high-spin Kitaev physics in systems with strong
SOC in anions and strong Hund’s coupling in transition
metal cations. Moreover, the non-negligible effects of
Kitaev interaction have also been verified by magnetization
measurements on CrBr3 monolayer [22] and magnon
experiments on CrI3 monolayer [23]. It therefore appears
legitimate to explore Kitaev QSL states in Cr-based
monolayers (which would then be the first Kitaev QSL
candidates with partially filled 3d electrons and S ¼ 3=2),

provided there is a way to make the isotropic exchange
coefficient J zero or nearly so while keeping K finite. The
way we are going to pursue, in order to accomplish such
annihilation, is to apply epitaxial strain, since it has been
shown to be an effective approach to tune the strength of
exchange couplings, and thus the Curie temperature, of
Cr-based systems [24]. We chose here to study CrSiTe3
(CST) and CrGeTe3 (CGT) under compressive strain
because, as we will see, their J coefficient is rather sensitive
to such strain. CST has the same structure as CGT, and
exhibits a similar Heisenberg behavior as CGT but with an
additional slightly favoring out-of-plane anisotropy [25,26]
[note that properties of CST, including the nature of its FM
state, can be well explained by Eq (2) as well [15] ].
Technically, the elements of the exchange matrix J , as

well as the SIA coefficient Azz, are obtained by performing
density functional theory (DFT) calculations, together with
the four-state energy mapping method [15,27,28], for any
investigated epitaxial strain in CST and CGT. These first-
principles-derived magnetic parameters are then used as
inputs of both classical Monte Carlo (MC) simulations and
quantum simulations using a thermal pure quantum (TPQ)
states method [29]. As we will show below, such simu-
lations reveal the existence of a strain-driven intermediate
state bridging FM and AFM phases in CST and CGT, with
this bridging state possessing many hallmarks of QSL, that
are a double peak in the specific heat vs temperature
function and a low-temperature plateau in the temperature
evolution of the entropy. This Letter particularly focuses on
CST, while (qualitatively identical) results for CGT are
reported in the Supplemental Material [30].
Figures 2(a) and 2(b) report the behaviors of the

magnetic parameters of Eq. (2) as a function of compressive
strain η in CST, as predicted by DFT. Specifically, the
isotropic J parameter has a value of −3.42 meV at zero
strain (relaxed case), which is indicative of the FM nature
of CST. But then, J changes its sign at −2.41% and
therefore favors an AFM state when further increasing the
magnitude of the compressive strain. It is further found that
another diagonal element of the J matrices indicated above
(i.e., J þ K) changes its sign at −2.25%. On the other hand,
the Kitaev coefficient K is 0.34 meVat zero strain and only
slightly decreases when increasing the magnitude of strain
η. In particular, K almost remains constant at 0.275 meV
around the strain range between −2.25% and −2.41%.
Furthermore, when increasing the magnitude of strain η, the
SIA coefficient Azz slightly increases and keeps the value
of 0.22 meV between η ¼ −2% and −4%. The opposite
behaviors of K and Azz upon varying strain, though weak,
lead to the total anisotropy being in-plane when η < −0.02,
since it is previously determined that the K term favors out-
of-plane (through a frustration mechanism), while SIA
favors in plane for CST [15]. Moreover, the other terms of
the J matrices, that are Γ1 and Γ2, are found to be around
an order smaller thanK, and also change slowly with strain.

FIG. 1. Schematization of crystal structure and the Kitaev basis
of CrSiTe3 monolayer. The black parallelogrammarks the unit cell
of the honeycomb lattice of CrSiTe3 monolayer. The fXYZg basis
of the Kitaev model is indicated by red, green, and blue arrows,
which is determined by Löwdin orthogonalization [17] of the hard
axes of the nearest neighbor Cr-Cr interactions. The X, Y, and Z
directions are found to be very close to the Cr─Te bonds [18].
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Interestingly and according to the Kitaev model [4], the
vanishing of J (or J þ K) and the large value of K hint
toward the possibility of forming a QSL state near the
boundary between FM and AFM states, as is in line with a
recent study [41]. Additionally, in our model, there is also a
finite SIA term, in the strain range where K is finite but J
(or J þ K) vanishes. The effect of such a SIA term to the
existence of QSL is unknown, to the best of our knowledge.
To determine the phase diagram of CST in its stability

region and search for possible QSL states, we now compute
the quantity of fidelity using the exact diagonalization (ED)
method. Practically, the DFT-extracted magnetic parame-
ters at different strains are inserted into ED quantum
simulations, from which the ground-state wave functions
are obtained. The fidelity metric g, which measures changes
in ground-state wave functions, is then calculated as [42]

g ¼ 2

Ns

1 − Fðμ; δμÞ
ðδμÞ2 ; ð3Þ

where Fðμ; δμÞ ¼ jhΨðμÞjΨðμþ δμÞij is the overlap
between two ground-state wave functions at strain μ and
μþ δμ with δμ → 0, and Ns is the number of sites. As
Fðμ; δμÞ equals 0 for two states that are exactly orthogonal, a
peak in fidelity gwill be detected at the boundary of a phase
transition; on the other hand, Fðμ; δμÞ is nearly 1 for two
states that are similar to each other and the fidelity gwill then
show no obvious changes in such a case. The fidelity is
originally a concept of quantum information, but has been
recently proven to be very successful in identifying quantum
phase transitions, in particular in ED simulations with
limited system sizes [43,44]. It can accurately predict phase
transition on the premise that the supercell (and thusNs) are
large enough. For a small size of supercells, the scaling
approach is commonly used: by increasing the size of
supercells, the true peaks in fidelity g become sharper,
while the “fake” ones should gradually vanish.
We thus calculated the fidelity g for 1 × 2, 2 × 2, and

2 × 3 supercells that contain 4, 8, and 12 sites, respectively.
As shown in Fig. 2(c), in the strain range extending from

−2.20% to −2.47%, two groups of peaks are found to not
only exist for all three supercells, but also become sharper
with increasing size of supercells, with one group at
η ≈ −2.4% and the other group at η ≈ −2.29%. On the
other hand, another peak at η ≈ −2.31% only exists for the
2 × 2 supercell, and can thus be considered to be fake. It is
therefore legitimate to conclude that, up to the sizes we
studied, the two peaks for the 2 × 3 supercell correspond to
phase transitions. The first peak is located at −2.285%,
which is near the aforementioned −2.25%, at which
(J þ K) changes its sign, and the second one is determined
to be at −2.408%, which is rather close to −2.41% for
which J becomes zero.
The dipolar patterns resulting from corresponding

classical MC simulations indicate that the phase at small
strain is a FM state, as consistent with the observed FM
state at zero strain [25,26], while the phase at the largest
compressive strain is a Néel-type AFM state, as also
consistent with recent calculations on compressive strained
CrI3 [45]. On the other hand, the magnetic dipoles obtained
from classical MC computations in the stability region of
the intermediate phase (between −2.25% and −2.41%)
exhibit a more complex pattern. As we can see in Fig. 3(a),
besides the FM domain, the zigzag AFM domains begin to
emerge at the phase boundary of the FM state and the
intermediate phase. As further shown in Fig. 3(d), both
ferromagnetically coupled pairs and antiferromagnetically
coupled pairs exist near the other phase boundary between
the intermediate phase and AFM state. Such coexistence of
FM and AFM indicates high frustration in the intermediate
state. Moreover, vortices and antivortices made of magnetic
dipoles appear at both phase boundaries and are found to
bond to each other at η ¼ −2.25%, which reminds us about
the Berezinskii-Kosterlitz-Thouless (BKT) phase [46,47].
Interestingly, the BKT phase is sometimes viewed as the
classical analogue of QSL [12,48]. Furthermore, Figs. 3(b)
and 3(c) show nearly degenerate low-energy spin patterns
(among many others) within the intermediate phase.
Let us also compute two other quantities from quantum

simulations that can provide signatures of QSL states,

FIG. 2. Magnetic coefficients and fidelity of CrSiTe3 monolayer. Panel (a) display the evolution of magnetic coefficients as a function
of compressive strain. Panel (b) further shows the evolution of J, J þ K, and K for a specific strain region. The horizontal dashed line
indicates the zero in energy, while the vertical lines mark the critical strains at which J or J þ K becomes zero. Panel (c) shows the
quantity of fidelity g as a function of strain for different sizes of supercells.
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which are the specific heat C and the thermal entropy S.
Practically, the temperature evolution of C and S are
calculated in our systems using the TPQ method,

C ¼ dhϕT jĤjϕTi
dT

; ð4Þ

S ¼ NkB ln 4 −
Z þ∞

T
dT 0 C

dT 0 ; ð5Þ

where ϕT is the TPQ state at T (see Ref. [12] for details).
According to previously established theory, spin-1=2
Kitaev QSL should exhibit two peaks in the specific heat,
with the one at higher (lower) temperature being associated
with localized (itinerant) Majorana fermions [12,49,50].
Consequently, entropy release should occur twice when
lowering temperature, between which a plateau should
exist. For a pure higher-spin Kiteav model without further
terms, Majorana fermions can be maintained [51] and the
plateau is predicted to locate at 1

2
NkB lnð2Sþ 1Þ [52],

while the effects of J, Γ, or SIA are yet to be determined, to
the best of our knowledge. We thus decided to calculate the
specific C and thermal entropy S for three specific strains,
−2.20%, −2.34%, and −2.56%, corresponding to the
different phase zones identified by the fidelity g. Results
are shown in Fig. 4. For the smallest-in-magnitude strain of
−2.20%, the specific heat C shows a single peak at
T ¼ 6.3 K, indicating a paramagnetic (PM) to FM tran-
sition there. The corresponding entropy S for this strain
smoothly decreases to zero as the temperature decreases
toward 0 K. Similarly, for the largest-in-magnitude strain of
−2.56%, a single peak in C marks a PM to AFM transition
at T ¼ 11.5 K, and the temperature dependence of S is
rather monotonic. Strikingly, for the intermediate strain at
−2.34%, a double-peak structure is clearly identified in

FIG. 3. Patterns of magnetic dipole moments at different strains
in CrSiTe3 monolayer. (a) Spin patterns at η ¼ −2.25%, at which
J þ K changes its sign. The solid and dashed rectangle marks the
FM and zigzag AFM domains, respectively. Vortices and anti-
vortices are indicated by the red and blue dots, respectively. The
values represented by the dots are the vortex number, which is
defined as n ¼ ð1=2πÞP6

i¼1 Δθi, where the rotation from i ¼
1–6 is done in an anticlockwise fashion. (b),(c) Energetically
degenerate states at η ¼ −2.30%. (d) Spin textures at
η ¼ −2.41%, at which J changes its sign. The solid and dashed
ellipses mark ferromagnetic and antiferromagnetic pairs, respec-
tively. Note that our MC simulations are followed by a conjugate
gradient algorithm, indicating that the spin patterns shown here
are at global or local minima [31].

FIG. 4. Temperature evolution of specific heat and entropy of CrSiTe3 monolayer at different strains. Panels (a)–(c) display the
specific heat in units of meV K, while panels (d)–(f) show entropy in units of NkB ln 4 as a function of temperature. The 2 × 3
honeycomb lattice is used with N ¼ 12.
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the specific heat C, with one at the higher temperature,
Th ¼ 3.7 K, and one at the lower temperature, Tl ¼
0.15 K. Such a double-peak structure, corresponding to
Majorana fermion excitations, strongly further supports
the existence of Kitaev QSL around strain of −2.34%.
Moreover, as previously reported, the ratio between Tl and
Th can be a quantitative measure for the distance to Kitaev
QSL, as Tl=Th ¼ 0.03 for typical Kitaev QSL and Tl=Th ¼
0.11 for Na2IrO3 [12]. Here, at strain of −2.34%, the Tl=Th
ratio is determined to be 0.04, which further emphasizes a
state rather close to Kitaev QSL. For the strain of −2.34%,
the entropy shows a clear plateau at 0.154 in units of
NkB ln 4, which is different from the 0.5 value of the pure
Kitaev model [52], but which is in line with the remarkably
lowered value of 0.1935 in the presence of the Γ1 term [53].
As mentioned previously, the distinct double peak in C and
the plateau in entropy further strongly suggest that the
predicted intermediate phase is indeed a Kitaev QSL.
To conclude, we have combined DFT calculations,

classical MC computations, and quantum simulations to
predict a possible strain-induced Kitaev QSL state in
epitaxial CrSiTe3 and CrGeTe3 monolayers. Such 3d
transition metal compounds, together with strain engineer-
ing allowing to continuously tune the J=K ratio, largely
expand the scope of candidates to realize Kitaev QSL.
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