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A unique feature of non-Hermitian systems is the skin effect, which is the extreme sensitivity to the
boundary conditions. Here, we reveal that the skin effect originates from intrinsic non-Hermitian topology.
Such a topological origin not merely explains the universal feature of the known skin effect, but also leads
to new types of the skin effects—symmetry-protected skin effects. In particular, we discover the Z2 skin
effect protected by time-reversal symmetry. On the basis of topological classification, we also discuss
possible other skin effects in arbitrary dimensions. Our work provides a unified understanding about the
bulk-boundary correspondence and the skin effects in non-Hermitian systems.
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Recently, non-Hermitian Hamiltonians [1–7] have been
extensively studied in open classical [8–14] and quantum
[15–20] systems as well as disordered or correlated solids
with finite-lifetime quasiparticles [21–27]. In particular,
much research has focused on distinctive characteristics of
non-Hermitian topological phases [28–60]. The rich non-
Hermitian topology is attributed to the complex-valued
nature of the spectrum, which enables two types of
complex-energy gaps [56]: line gap and point gap. Since
a non-Hermitian Hamiltonian with a line gap is continu-
ously deformed to a Hermitian one without closing the line
gap [56], topology for a line gap describes the persistence
of conventional topological phases against non-Hermitian
perturbations, which is relevant to topological lasers
[40–44], for example. On the other hand, a non-
Hermitian Hamiltonian with a point gap is allowed to be
deformed to a unitary one [46,56]. As a result, point-
gapped topological phases cannot always be continuously
deformed into any Hermitian counterparts; topology for a
point gap is intrinsic to non-Hermitian systems in sharp
contrast to a line gap. A point gap describes unique non-
Hermitian topological phenomena such as localization
transitions [1,2,46,52,58] and emergence of exceptional
points [21–26,34,37,49,50,53,55].
A hallmark of topological phases is the presence of the

localized states at the boundaries as a result of nontrivial
topology of the bulk [61–63]. Remarkably, non-Hermiticity
alters the nature of the bulk-boundary correspondence
(BBC) [64–92]. The critical distinction is the extreme
sensitivity of the bulk to the boundary conditions, which
is called the non-Hermitian skin effect [68]. It accompanies
the localization of bulk eigenstates as well as the dramatic
difference of bulk spectra according to the boundary
conditions, which forces us to redefine the bulk topology
so as to be suitable for the open boundary condition
[67,68,78,80]. The BBC persists in the presence of a line

gap since non-Hermitian Hamiltonians with a line gap can
be continuously deformed to Hermitian ones. However, the
BBC for a point gap has still remained unclear. Since a
point gap describes intrinsic non-Hermitian topology, the
nature of the BBC may be disparate from the Hermitian
counterpart. In fact, even when a point gap is open under
the periodic boundary condition, it can be close under the
open boundary condition [46,66,76]. Thus, the non-
Hermitian skin effect obscures point-gap topology.
This Letter provides a unified understanding about the

BBC and the skin effect in non-Hermitian systems. We
show that the BBC holds even for a point gap in semi-
infinite systems with only one boundary. In finite systems
with open boundaries, by contrast, we demonstrate that the
point-gap topology inevitably induces the non-Hermitian
skin effect and results in the absence of topologically
protected boundary states due to a point gap. On the basis
of such a topological origin, new types of the skin effects
are revealed, including theZ2 skin effect protected by time-
reversal symmetry. We also elucidate the relationship
between point and line gaps for the BBC.
Bulk-boundary correspondence in semi-infinite sys-

tems.—A non-Hermitian Hamiltonian H is defined to have
a point gap if and only if its complex spectrumdoes not cross
a reference point E ∈ C, i.e., det ðH − EÞ ≠ 0 [46,56]. The
simplest nontrivial example of the point-gapped topological
phases appears in one-dimensional systems with no sym-
metry. Whereas det ðH − EÞ is always real for HermitianH,
it can be complex for non-Hermitian H, by which the
following winding number WðEÞ ∈ Z is defined:

WðEÞ ≔
Z

2π

0

dk
2πi

d
dk

log det ðHðkÞ − EÞ; ð1Þ

where HðkÞ is the non-Hermitian Bloch Hamiltonian
in momentum space with the finite number of bands
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(k ∈ ½0; 2π�). Topological phases are absent in one-
dimensional Hermitian systems without symmetry protec-
tion [61–63]; the point-gap topology characterized byWðEÞ
is intrinsic to non-Hermitian systems.
Corresponding to WðEÞ ≠ 0, the boundary modes with

the eigenenergy E can appear in semi-infinite systems with
only one boundary. Suppose the non-Hermitian system has
a boundary on the left but no boundary on the right (the
same semi-infinite boundary condition is chosen below
unless otherwise stated). An important observation is that
the Hermitian Hamiltonian H̃ is obtained by [46,56]

H̃ ≔
�

0 H − E

H† − E� 0

�
: ð2Þ

Under the periodic boundary condition, when a point gap is
open for non-HermitianHðkÞ, a real energy gap is also open
for Hermitian H̃ðkÞ, and vice versa. In addition, H̃ respects
additional chiral symmetry by construction: ΓH̃Γ−1 ¼ −H̃
with Γ ≔ σz. As a result of the conventional BBC for
Hermitian Hamiltonians, H̃ with the semi-infinite boundary
possesses topologically protected zeromodes localized at the
boundary [61–63] in a similar manner to the Su-Schrieffer-
Heeger model [93]. The corresponding topological invariant
coincides with WðEÞ in Eq. (1). For WðEÞ < 0, there
appear boundary modes ð0 jEiÞT with negative chirality
[i.e., Γð0 jEiÞT ¼ −ð0 jEiÞT], which implies that jEi is a
right eigenstate of non-Hermitian H (i.e., HjEi ¼ EjEi)
localized at the boundary. ForWðEÞ > 0, on the other hand,
the boundary modes ðjEi 0ÞT have positive chirality [i.e.,
ΓðjEi 0ÞT ¼ þðjEi 0ÞT], which in turn implies that jEi is a
right eigenstate of H†, i.e., a left eigenstate of H (i.e.,
hEjH ¼ hEjE) [94].
The above discussion is valid for arbitrary E ∈ C in the

complex-energy plane satisfyingWðEÞ ≠ 0. Thus, in semi-
infinite systems HSIBC, the infinite number of boundary
modes with eigenenergies E emerges as a result of the
nontrivial winding number WðEÞ ≠ 0. This conclusion
leads to the following theorem (index theorem in spectral
theory [95–100]):
Theorem I: Let σ½HðkÞ� be the spectrum of HðkÞ with

k ∈ ½0; 2π�, which forms closed curves in the complex-
energy plane (Fig. 1). Then, the spectrum of semi-infinite
HSIBC with only one boundary is equal to σ½HðkÞ� together
with the whole area of E ∈ C enclosed by σ½HðkÞ� with
WðEÞ ≠ 0. For WðEÞ < 0 [WðEÞ > 0], jEi is a right
(left) eigenstate of HSIBC localized at the boundary [i.e.,
HSIBCjEi ¼ EjEi (hEjHSIBC ¼ hEjE)].
Theorem I is illustrated with the Hatano-Nelson model

[1,2] without disorder, which is given by

HðHNÞ ≔
X
i

½ðtþ gÞc†iþ1ci þ ðt − gÞc†i ciþ1� ð3Þ

with t > 0 and g ∈ R. The spectrum of the Bloch
Hamiltonian HðHNÞðkÞ ¼ ðtþ gÞeik þ ðt − gÞe−ik forms

an ellipse in the complex-energy plane, and we have
WðEÞ ¼ sgnðgÞ for E ∈ C inside this ellipse. In fact, the
hopping from right to left dominates that from left to right
for g < 0, which leads to the emergence of the boundary
modes [100].
Skin effect as point-gap topology.—The above discus-

sion breaks down in finite systems with open boundaries. In
fact, the infinite number of boundary modes is impossible
in finite systems. Furthermore, an additional boundary
condition is imposed because of the other boundary, which
may forbid some of the boundary states appearing in semi-
infinite systems. For example, the spectrum of the Hatano-
Nelson modelHðHNÞ

OBC with open boundaries forms not a loop
but a line on the real axis in the complex-energy plane,
which signals the non-Hermitian skin effect. In fact, using
an imaginary gauge transformation [1,2,68,76]

V−1
r c†i Vr¼ ric†i ; V−1

r ciVr ¼ r−ici; ð0<r<∞Þ; ð4Þ

we have a Hermitian Hamiltonian H̄ ≔ V−1
r HðHNÞ

OBCVr for
r ≔

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffijðt − gÞ=ðtþ gÞjp
. Here, Eq. (4) shifts the momentum

from k to k − i log r. Since this similarity transformation

does not change the spectrum, HðHNÞ
OBC has the entirely real

spectrum and hence no longer retains the point gap.
Saliently, such a non-Hermitian skin effect is a general
non-Hermitian topological phenomenon as a direct conse-
quence of point-gap topology, as summarized in the
following theorem:
Theorem II: Finite HOBC with open boundaries is

always topologically trivial in terms of a point gap.
Consequently, if HðkÞ under the periodic boundary con-
dition is point-gapped topological, the non-Hermitian skin
effect inevitably occurs with a topological phase transition.
To see this theorem, we begin with

lim
N→∞

σðHOBCÞ ⊂ σðHSIBCÞ; ð5Þ

where σðHOBCÞ is the spectrum of a non-Hermitian system
HOBC with open boundaries and N unit cells, and σðHSIBCÞ

(a) (b)

FIG. 1. Complex spectra of non-Hermitian systems with
periodic, open, and semi-infinite boundaries. (a) A semi-infinite
system possesses the infinite number of boundary modes due to
the nonzero winding number W ≠ 0 in the corresponding
periodic system. (b) The spectrum of a semi-infinite system
shrinks through the imaginary gauge transformation, resulting in
an arc of the open-boundary system.
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is the spectrum of the corresponding semi-infinite system
HSIBC. In fact, an approximate eigenstate of HSIBC can be
obtained from an eigenstate of HOBC, which becomes an
exact eigenstate for N → ∞ [100]. The contrary is not
always true: even if an approximate eigenstate of HOBC is
constructed from an eigenstate of HSIBC, it is not neces-
sarily an exact eigenstate of HOBC.
A crucial step is again the imaginary gauge transforma-

tion:HOBC → V−1
r HOBCVr andHSIBC → V−1

r HSIBCVr with
r ∈ ð0;∞Þ. For each transformation, we still have the
inclusion in Eq. (5):

lim
N→∞

σðV−1
r HOBCVrÞ ⊂ σðV−1

r HSIBCVrÞ: ð6Þ

This imaginary gauge transformation does not change the
spectrum of HOBC. However, it changes the spectrum of
HSIBC since HSIBC has no boundary on the right because of
the semi-infinite nature [Fig. 1(b)]. In fact,HðkÞ changes to
Hðk − i log rÞ through Vr. Nevertheless, Eq. (6) implies
that the transformed semi-infinite spectrum includes
the spectrum of HOBC for any transformation Vr. Thus,
we have

lim
N→∞

σðHOBCÞ ⊂ ⋂
r∈ð0;∞Þ

σðV−1
r HSIBCVrÞ: ð7Þ

Because of Theorem I, when HðkÞ has a point gap and
WðEÞ < 0 [WðEÞ > 0], right (left) boundary modes with
eigenenergy E appear in the semi-infinite system. Let us
choose an appropriate imaginary gauge Vr such that these
boundary modes are transformed to delocalized bulk
modes. Then, E is on the edges of σðV−1

r HSIBCVrÞ, whereas
it is originally located inside σðHSIBCÞ. Thus, the inter-
section of σðHSIBCÞ and σðV−1

r HSIBCVrÞ is strictly smaller
than σðHSIBCÞ [100]. Repeating this procedure for all Vr
with r ∈ ð0;∞Þ, the right-hand side of Eq. (7) reaches an
open curve or a topologically trivial area of which interior
satisfies WðEÞ ¼ 0, otherwise a contradiction arises [100].
Since this region includes limN→∞ σðHOBCÞ because of
Eq. (7),HOBC is also topologically trivial and different from
HðkÞ with nontrivial topology. Furthermore, σðHOBCÞ is
indeed distinct from σ½HðkÞ�, which implies the inevitable
occurrence of the non-Hermitian skin effect due to the
point-gap topology.
Remarkably, Refs. [67,68,78,80] determine the condi-

tions for the spectra of open-boundary systems and develop
the non-Bloch band theory of non-Hermitian systems.
Their conditions are actually equivalent to the set in the
right-hand side of Eq. (7) [100]. An observation similar to
our Theorem II is also made in Ref. [76], which is made
rigorous by our results. Moreover, we identify the non-
Hermitian skin effect as the point-gap topology [101]. Such
a topological origin constitutes a universal feature of the
non-Hermitian skin effect. Furthermore, new types of the

skin effects—symmetry-protected skin effects—are discov-
ered, as illustrated below.
Z2 non-Hermitian skin effect.—The point-gap topology

and the corresponding skin effect are enriched by sym-
metry. Here, we consider time-reversal symmetry defined
in terms of transposition [56]:

THTðkÞT−1 ¼ Hð−kÞ; TT� ¼ −1; ð8Þ
where T is a unitary operator. This symmetry is funda-
mental as reciprocity in non-Hermitian spinful systems and
naturally appears, for example, in mesoscopic systems
[102,103] and open quantum systems [104–106].
In conventional quantum spin Hall insulators, the integer

Chern number vanishes but the Kane-Mele Z2 one
becomes nontrivial because of time-reversal symmetry
[61–63]. Similarly, Eq. (8) trivializes the winding number
in Eq. (1), but instead, it supplies a Z2 invariant. The Z2

topological invariant νðEÞ ∈ f0; 1g for a reference point
E ∈ C is given by [56]

ð−1ÞνðEÞ≔ sgn

�
Pf½ðHðπÞ−EÞT�
Pf½ðHð0Þ−EÞT�

×exp

�
−
1

2

Z
k¼π

k¼0

d logdetf½HðkÞ−E�Tg
��

: ð9Þ

Corresponding to the Z2 topological invariant νðEÞ, we
have an index theorem similar to Theorem I for semi-
infinite systems [100]. A clear distinction from Theorem I
is the Kramers degeneracy due to Eq. (8) [30,51,56]. The
extended Hermitian Hamiltonian H̃ in Eq. (2) respects
time-reversal symmetry as well as the additional chiral
symmetry Γ, analogous to time-reversal-invariant topologi-
cal superconductors [107–110]. The index theorem states
that the semi-infinite system H̃ hosts an odd number of
boundaryMajorana Kramers pairs for eachEwith νðEÞ¼1.
In terms of the original non-Hermitian Hamiltonian H, the
Kramers pair reduces to a pair of right and left eigenstates of
H localized at the same boundary. Using the transposition
version of time reversal in Eq. (8), we can convert the left
eigenmode into a right one in the oppositely extended semi-
infinite system (i.e., semi-infinite system with a boundary
only on the right). As a result, finite systems with open
boundaries host localized modes at both ends, as explicitly
shown in the following model.
We recall that a quantum spin Hall insulator [111,112]

can be constructed from a pair of time-reversed quantum
Hall insulators [113] with the spin-orbit coupling.
Similarly, combining the Hatano-Nelson model HðHNÞðkÞ
in Eq. (3) and its time-reversed partner ðHðHNÞÞTð−kÞ, we
have a canonical model that exhibits the Z2 skin effect:

HðkÞ ¼
�
HðHNÞðkÞ 2Δ sin k

2Δ sin k ðHðHNÞÞTð−kÞ

�

¼ 2t cos kþ 2Δðsin kÞσx þ 2igðsin kÞσz; ð10Þ
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with t; g;Δ ≥ 0. It indeed respects time-reversal symmetry
with T ¼ iσy, and its spectrum is given as E�ðkÞ ¼
2t cos k� 2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g2 − Δ2

p
sin k. Thus, HðkÞ for g > Δ retains

a point gap. Since it can be continuously deformed to HðkÞ
with t ¼ g, Δ ¼ 0 while keeping the point gap, the Z2

invariant in Eq. (9) is obtained as νðEÞ ¼ 1when E is in the
area enclosed by σ½HðkÞ�.
The spectrum of Eq. (10) is shown in Fig. 2(a). The

open-boundary spectrum is clearly different from the
periodic-boundary counterpart, which indicates the non-
Hermitian skin effect. Each complex eigenenergy consists
of a Kramers pair, one of which is localized at the left
boundary and the other at the right boundary [Fig. 2(b)].
Because of the Z2 nature, the point-gap topology becomes
trivial and no skin effect occurs if the two nontrivial
systems are stacked. Figure 2(a) also shows the spectrum
of such a stacked system

HstackðkÞ ¼
�

HðkÞ iδ · σ

−iδ · σ HðkÞ

�
; ð11Þ

where the off-diagonal terms are symmetry-preserving
couplings. Consistently, the non-Hermitian skin effect no
longer survives.
Since the Z2 skin effect is topologically protected by

time-reversal symmetry, it breaks down by a symmetry-
breaking perturbation including ðδhÞσz [Fig. 2(a)]. In
particular, such a local perturbation, which does not
connect the ends, may be infinitesimal for the breakdown
of the skin effect [81]. This local infinitesimal instability is
unique to symmetry-protected non-Hermitian skin effects.
Bulk-boundary correspondence in finite systems.—

General theories on the BBC in non-Hermitian systems
have recently been developed [67,68,78,80]. These theories
implicitly consider non-Hermitian topology for a line gap
[56]. A non-Hermitian Hamiltonian H is defined to have a
line gap if and only if its spectrum does not cross a
reference line in the complex-energy plane. The modified
BBC persists because a non-Hermitian Hamiltonian with a

line gap can be continuously deformed to a Hermitian one
[56]. On the other hand, we develop a theory of the BBC for
a point gap, which complements Refs. [67,68,78,80].
A prototypical example is a non-Hermitian extension of

the Su-Schrieffer-Heeger model [93] with asymmetric
hopping [64,67,68,80,100]. It exhibits the skin effect under
the open boundary condition due to the point-gap topology
characterized by Eq. (1) under the periodic boundary
condition [100]. Still, a line gap can be open and the
corresponding topological invariant protected by sublattice
symmetry can be well defined under the open boundary
condition. As a result, topologically protected zero modes
can emerge because of this line-gap topology.
Importantly, point and line gaps are not necessarily

independent of each other. In fact, if a line gap is open,
a point gap is also open with a reference point on the
reference line. Hence, a reminiscence of line-gap topology
may survive in the presence of a point gap even if the line
gap is closed. A prime example includes non-Hermitian
superconductors in one dimension without time-reversal
symmetry. In this case, particle-hole symmetry

CHTðkÞC−1 ¼ −Hð−kÞ; CC� ¼ þ1 ð12Þ

makes zero energy a special point in the complex-energy
plane in contrast to time-reversal symmetry. As a result,
non-Hermitian systems have the Z2 topological phases for
both point and line gaps, and their topological invariants
coincide with each other [56]. The Majorana zero modes in
Hermitian topological superconductors survive as long as
the point gap at E ¼ 0 is open. Correspondingly, an index
theorem states the emergence of the zero modes localized
at the boundary [100]. A concrete model of such a non-
Hermitian s-wave topological superconductor is provided
in Ref. [81]. To characterize this type of point-gap topology
in a general manner, Refs. [100,114] classify the homo-
morphisms from line-gap topology to point-gap topology
for all the 38-fold internal symmetry class in arbitrary
spatial dimensions.
Higher-dimensional skin effects.—By contrast, point-gap

topology can be nontrivial even if line-gap topology is
trivial. For example, whereas line-gap topology is absent in
one dimension with and without time-reversal symmetry
[56], the point-gap topology characterized by Eqs. (1) and
(9) is present. As shown in this Letter, such intrinsic point-
gap topology in finite systems leads to not the BBC but
the skin effect. References [100,114] also classify the
non-Hermitian topology unique to a point gap. This
classification allows us to know possible types of sym-
metry-protected skin effects for general symmetry classes
and arbitrary dimensions. Like surface Dirac fermions in
topological insulators, higher-dimensional skin modes
appear in any boundary of the system under a proper
boundary condition [115].

(a) (b)

FIG. 2. Z2 non-Hermitian skin effect. (a) Energy spectra of the
non-HermitianHamiltonian in Eq. (10) under the various boundary
conditions [t ¼ 1, g ¼ 0.3, Δ ¼ 0.2, δ ¼ ð1; 1; 1Þ × 10−2,
δh ¼ 10−3, N ¼ 100]. (b) Kramers doublet with E ¼ 1.948, one
of which is localized at the left boundary and the other at the right
boundary.
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For example, a two-dimensional variant of the Z2 skin
effect is investigated in Ref. [100]. There, skin modes
coexist with bulk modes under the open boundary con-
dition in one direction and the periodic boundary condition
in the other direction, which is the “proper boundary
condition” in this system. Remarkably, only OðLÞ skin
modes appear from all the OðL2Þ modes in this model (L
denotes the length in one direction), which is unfeasible for
the skin effects in one dimension.
Discussion.—The non-Hermitian skin effect has recently

been observed in electrical circuits [89,92], a mechanical
metamaterial [90], and quantum walk [91], all of which we
identify are intrinsic non-Hermitian topological phenom-
ena. Beyond the observed one, this Letter predicts novel
types of skin effects enabled by symmetry protection. It
merits further research to investigate a variety of symmetry-
protected non-Hermitian skin effects and their new physics.

We thank Yosuke Kubota for helpful discussions. This
work was supported by a Grant-in-Aid for Scientific
Research on Innovative Areas “Topological Materials
Science” (KAKENHI Grant No. JP15H05855) from the
Japan Society for the Promotion of Science (JSPS).
This work was also supported by JST CREST Grant
No. JPMJCR19T2, Japan. N. O. was supported by
KAKENHI Grant No. JP18J01610 from the JSPS. K. K.
was supported by KAKENHI Grant No. JP19J21927 from
the JSPS. K. S. was supported by PRESTO, JST (Grant
No. JPMJPR18L4). M. S. was supported by KAKENHI
Grant No. JP17H02922 from the JSPS.
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