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We study the quantum Hall plateau transition on rectangular tori. As the aspect ratio of the torus is
increased, the two-dimensional critical behavior, characterized by a subthermodynamic number of
topological states in a vanishing energy window around a critical energy, changes drastically. In the
thin-torus limit, the entire spectrum is Anderson localized; however, an extensive number of states retain a
Chern number C ≠ 0. We resolve this apparent paradox by mapping the thin-torus quantum Hall system
onto a disordered Thouless pump, where the Chern number corresponds to the winding number of an
electron’s path in real space during a pump cycle. We then characterize quantitatively the crossover
between the one- and two-dimensional regimes for finite torus thickness, where the average Thouless
conductance also shows anomalous scaling.
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Introduction.—The integer quantum Hall plateau tran-
sition [1] has a long and rich history as an example of the
interplay between disorder and topology in condensed
matter. While the quantization is ultimately due to the
presence of a topological invariant [2,3], its astonishing
precision is due to disorder-induced localization of electron
states away from the critical energy [4]. In a high magnetic
field, the motion of electrons is confined to the lowest
Landau level (LLL). The LLL carries a nonzero Chern
number, a topological invariant related to the Hall con-
ductance, which forbids complete localization of the
spectrum. A critical energy exists where the electron
localization length ξ diverges, explaining the plateau
transition as a quantum critical point that has successfully
been studied by means of scaling theories [5]. However, the
precise value of ν, the critical exponent characterizing the
divergence of ξ, and whether or not it agrees with experi-
ment [6–9], remains controversial [10–12].
Most numerical studies of the critical exponent have

relied on the transfer matrix method for either the
original continuum LLL problem [13,14] or the Chalker-
Coddington network model [15–18] on strip geometries.
On the other hand, purely two-dimensional methods to
determine ν have been developed based on the topological
character of individual eigenstates [19,20] (an idea that has
since been used in several studies [11,21–27]), the disorder-
averaged Hall [28,29], Thouless [29,30] and longitudinal
[31] conductance, as well as quantum diffusion [32].
Here one considers a square torus with both sides scaled
concurrently, Lx ¼ Ly ∼ N1=2

ϕ (Nϕ is the number of mag-
netic flux quanta through the system, proportional to the
system’s area). The number of states with nonzero Chern

number (hereafter simply called Chern states) is found to

diverge subextensively with system size, as N1−ð1=2νÞ
ϕ [19].

The success of methods based on the Chern number in
square geometry motivates their application to rectangular
geometries Lx > Ly with varying aspect ratio a ¼ Lx=Ly,
and particularly in the quasi-one-dimensional limit a → ∞
at fixed thickness, reminiscent of the transfer matrix
calculations. This is especially interesting because the
defining feature of the 2D problem (the presence of a
topologically robust Hall conductance, encoded in the
Chern number C) does not have an obvious one-dimen-
sional counterpart. While the mathematical definition of C
holds regardless of system size or aspect ratio, on physical
grounds the system in the quasi-1D limit must be described
by a local, disordered free-fermion chain—essentially the
Anderson model [33]. This raises the question of what
happens to Chern states in this limit, and how the
topological character of the LLL is manifested once the
system is mapped onto a 1D Anderson insulator.
One may reasonably expect, given the stronger tendency

towards localization in one-dimensional systems [34], that
quasi-1D scaling will lead to a faster decay of the fraction
of Chern states relative to the 2D case (where the fraction

falls off as N−ð1=2νÞ
ϕ ), perhaps even to saturate the lower

bound N−1
ϕ (achieved if all states but one have C ¼ 0). In

fact, we find quite the opposite: Chern states do not vanish
under 1D scaling. On the contrary, they represent a finite
fraction of all states—and asymptotically take over the
entire spectrum.
As a byproduct, we also obtain the (longitudinal)

Thouless conductance g [35]. Both the typical and average
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g decay exponentially with Lx, as is expected for localized
one-dimensional systems. Interestingly though, we find that
the average g retains a memory of the 2D critical scaling.
Existing studies of one-dimensional scaling of the

integer quantum Hall problem [36,37] focus on open
boundary conditions, where the crossover is seen through
mixing of topological edge states on opposite edges of the
strip. Our edge-free torus geometry offers a different
perspective on the problem and reveals fascinating and
unexpected behavior. Guided by these surprising numerical
findings, we develop a theoretical understanding based on
a mapping to a disordered Thouless pump [38] and clarify
the meaning of the Chern number in the 1D limit. A
quantitative description of the proliferation of Chern states
follows naturally from this perspective.
Model and numerical method.—We consider a con-

tinuum model of two-dimensional (2D) electrons in a high
perpendicular magnetic field such that the dynamics can be
projected onto the LLL. The model is set on a rectangular
torus with sides Lx, Ly such that LxLy ¼ 2πNϕl2

B, where

lB ¼ ffiffiffiffiffiffiffiffiffiffiffi
eB=ℏ

p
is the magnetic length, which we set to 1

henceforth. We define the aspect ratio a ¼ Lx=Ly and take
a ≥ 1. Disorder in the system is modeled by a Gaussian
white noise potential VðrÞ, hVðr1ÞVðr2Þi ¼ U2δ2ðr1 − r2Þ.
We set U ¼ 1 henceforth as disorder is the only energy
scale in the problem: kinetic energy is quenched in the
LLL; the cyclotron gap and interaction strength are taken to
be infinite and zero, respectively. The torus has generalized
periodic boundary conditions with angles θx;y. These
also represent magnetic fluxes through the two nontrivial
loops in the torus and are needed to define and compute
Chern numbers of individual eigenstates in the disordered
problem. For each disorder realization, we compute and
diagonalize the single-particle Hamiltonian on a lattice of
boundary angles θ and store the eigenvalues fEnðθÞg and
eigenvectors fjψnðθÞig. The energies are used to calculate
the Thouless conductance gn ≡ Eθy ½σθxEnðθÞ� (E denotes
averaging, σ denotes standard deviation), a measure of
sensitivity to boundary conditions in the long direction; the
wave functions are used to compute each eigenstate’s
Chern number Cn via a standard numerical technique
[39]. Further details on the model and the numerical
method are provided in the Supplemental Material [40].
Density of Chern states.—With the method outlined

above, we calculate the density of states with Chern number
C, fρCðEÞ∶C ∈ Zg. These obey P

C ρC ¼ ρ (total density
of states) as well as

P
C CρC ¼ ∂Eσxy (Hall conductance).

Past studies [11,19] have characterized the 2D critical
behavior by looking at the density of “current-carrying
states,” ρtopðEÞ≡ ρðEÞ − ρ0ðEÞ. The width of ρtop scales as
N−1=2ν2D

ϕ in the 2D thermodynamic limit.
In the present context, we observe completely different

behavior. Namely, the width of ρtop does not vanish as Lx

is increased. It stays roughly constant for a ≳ 1, and

eventually starts increasing for a ≫ 1 (Fig. 1). This
increase is due both to the broadening of ρ�1ðEÞ (i.e.,
more pairs of Chern �1 states appearing away from the
band center), and to an increase in higher-jCj states.
Despite these effects, the Hall conductance remains
unchanged, and is determined by the shortest side of the
torus [40]. It is as if percolating in either direction is enough
for a state to acquire a nonzero Chern number.
This extensive number of topological current-carrying

states seems to be incompatible with the localized nature of
the spectrum (which we verify independently by means
of the Thouless conductance and localization length).
Reconciling these facts requires a careful analysis of the
fate of Chern numbers as the dimensionality is tuned from
d ¼ 2 to d ¼ 1 by increasing the aspect ratio a.
Thin-torus limit.—The above question is best addressed

in the thin-torus limit Ly ≪ 1, though (as we shall clarify
later) the answer we find also applies to finite Ly, provided
a is sufficiently large. The LLL Hamiltonian in the thin-
torus limit is approximated by

H1D ¼
X
n

vnc
†
ncn þ ðtnc†nþ1cn þ H:c:Þ; ð1Þ

with vn ¼ V0ðxnÞ, tn ¼ eiθx=NϕV1ðxnÞ, and xn ¼ ð2πnþ
θyÞ=Ly. The Vm are partial Fourier transforms of the LLL-
projected real-space disordered potential, Ṽðx; yÞ, given by

VmðxÞ≡
Z

Ly

0

dy
Ly

e2πimy=LyṼðx; yÞ: ð2Þ

LLL projection suppresses nonzero wave vectors,
giving t=v ∼ e−π

2=L2
y ≪ 1. Further-neighbor hopping terms

in Eq. (1) are exponentially smaller than t and can be
neglected. In the following, we take tn ≡ teiθx=Nϕ for
simplicity, as the precise magnitudes are unimportant.
The angles θ assume very different roles in this asymmetric
limit: θx is the magnetic flux through the ring, while θy is
the parameter of a Thouless pump [38] which smoothly

(a)

(b)

FIG. 1. Density of (a) C ¼ 0 and (b) C ≠ 0 states for fixed
Ly ¼ 10 and increasing Nϕ. The density of Chern C ≠ 0 states
ρtopðEÞ grows and broadens at the expense of ρ0ðEÞ.

PHYSICAL REVIEW LETTERS 124, 086602 (2020)

086602-2



moves the Landau orbits relative to the background
potential. At any fixed θ, the Hamiltonian of Eq. (1) is
Anderson localized. As the pump parameter θy is adia-
batically taken through a cycle, the random on-site poten-
tials vnðθyÞ change smoothly and the system undergoes
spectral flow: at the end of the cycle, vnð2πÞ ¼ vnþ1ð0Þ, so
the initial and final spectra coincide up to a n ↦ nþ 1
translation. However, following each eigenstate through the
adiabatic cycle reveals an interesting picture.
Adiabatically changing a local chemical potential in an

Anderson insulator leads to nonlocal charge transport [41]
due to avoided resonances between the manipulated site
and arbitrarily distant ones (the distance is practically
limited by log τ, where τ is the timescale of the adiabatic
manipulation; for calculatingC, we can take τ → ∞). In the
present setting, varying θy adiabatically manipulates all
random fields at once, giving rise to a complicated network
of resonances and thus more intricate patterns of charge
transfer across the system. However, as a consequence of
adiabaticity, an electron that starts the cycle in orbital n
ends in orbital n − 1 (i.e., at the same point in real space).
Whenever two sites n1 and n2 are tuned past a resonance,
charge is transported by a sequence of virtual nearest-
neighbor hops through the shortest path between them [40].
One may expect each electron to take a local random walk
in the vicinity of its initial site ni before ending the cycle at
site ni − 1. However, this cannot be the case for every
electron: at least one must wind around the entire system.
Simple algebra shows that the winding numbers Wn of the
electrons’ paths must satisfy

P
n Wn ¼ 1 [40].

This bears intriguing similarity to the total Chern number
of states in the Landau level,

P
n Cn ¼ 1. In fact, such an

identification is correct: the Chern number Cn reduces to
the winding number Wn in the thin-torus limit. This can be
seen by considering the phase acquired during a loop
around the “Brillouin zone” defined by θ. Threading flux θx
does nothing to an Anderson localized wave function,
whereas threading a quantum of θy flux causes it to wind
Wn times around the ring, which encircles the θx flux. The
net phase acquired is thus 2πWn, giving Cn ¼ Wn. This can
be straightforwardly made rigorous by partitioning the θ
torus into thin rectangular strips, so phases are defined
unambiguously [40]. This identification is the key to
explaining the observed proliferation of Chern states under
1D scaling. In essence, during a Thouless pump cycle,
every electron hops randomly and nonlocally across the
chain many times, generically acquiring a large winding
number, and thus a large Chern number. Quantitatively, we
find the number of steps in the random walk Nr diverges as
Nr ∼ Lx; the distribution of Chern numbers is approxi-
mately normal, with standard deviation ∼L1=2

x [40].
Dimensional crossover.—Even though the thin-torus

limit Ly ≪ 1 is a helpful simplification, the physics
described above remains valid for Ly > 1, as long as
a ≫ 1. Hopping matrix elements are significant up to a

real-space distance Oð1Þ, i.e., a number of sites OðLyÞ.
These matrix elements are responsible for local level
repulsion and strongly suppress energy fluctuations during
the Thouless pump cycle. On a square torus, we know from
numerics that the average Thouless conductance obeys
gðE;LÞ ≃GðEL1=ν2DÞ, where GðxÞ ≃ g0e−x

2=2σ2 is a scaling
function and g0 and σ are Oð1Þ constants. Inverting the
definition of g yields an estimate of the energy fluctuation
δE of a typical state during the pump cycle:

δE ∼
2πvg0
L2

exp

�
−

E2

2σ2
L2=ν2D

�
: ð3Þ

Here v is the bandwidth and 2πv=L2 is the typical
level spacing. As δE is determined by the range of local
hopping matrix elements, Eq. (3) remains true if we
consider a rectangular torus and replace L with the short
circumference Ly. The expected number of resonances
encountered during a pump cycle, Nr, is proportional to
the number of states in the spectrum with energies within
the range of fluctuations δE. Approximating ρðEÞ ≃
ðLxLy=2πvÞe−1

2
ðE=σ0Þ2 (the exact expression [42] deviates

slightly from a Gaussian) yields

Nr ∼ ρðEÞδE ∼ g0ae−
1
2
ðE=E0Þ2 ; ð4Þ

where E0 is an Lx-independent energy scale. Thus, even
away from the band center, and even for Ly > 1, increasing
a eventually leads to Nr ≳ 1. At that point the crossover
between 2D and 1D behavior takes place, with typical
states acquiring a nontrivial winding number, equivalent to
a nontrivial Chern number. This crossover happens
unevenly in energy: it starts at the band center (where
one already has Chern states even in the 2D thermodynamic
limit) and spreads towards the band edges. The contour
defining the crossover (fixed by setting Nr ≃ 1) is

E ∼
ffiffiffiffiffiffiffiffiffiffiffi
lnðaÞ

p
: ð5Þ

This prediction is borne out by numerical data on the
density of Chern states, ρCðEÞ. Figure 2 shows that the
broadening of ρtop, already visible in Fig. 1, is explained

fairly accurately as a scaling collapse of ρC½E=
ffiffiffiffiffiffiffiffiffiffiffi
lnðaÞp �, for

large enough a.
Thouless conductance.—As mentioned earlier, while 1D

scaling causes the proliferation of Chern states across
the spectrum, it also removes the critical energy character-
istic of the 2D problem and makes the entire spectrum
Anderson localized. We verify this numerically by calcu-
lating the disorder- and eigenstate-averaged Thouless
conductance gavðEÞ, Fig. 3(a). Unlike the 2D case, where
at the center of the band gavð0Þ ∼Oð1Þ as L → ∞, here
we have gavð0Þ ∼ e−Lx=ξ1 , as expected for a 1D problem (we
find ξ1 ≃ 1.7Ly). However, surprisingly, the normalized
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quantity gavðEÞ=gavð0Þ displays scaling collapse with
the same critical exponent as the two-dimensional case,
ν2D ∼ 2.4 [43], Fig. 3(b). These results seem contradictory:
on the one hand, a finite ξ1 suggests localization across
the spectrum with no critical energy; on the other, we
observe signatures of a divergent ξ2 ∼ E−ν2D , reproducing
the 2D critical behavior, even as the scaling is purely one-
dimensional.
The variation of g across samples and eigenstates sheds

light on this issue. At the center of the band, the distribution
of g broadens as Lx is increased and becomes approx-
imately log-normal [the distribution Pðln gÞ is shown in
Fig. 3(c)]. States in the positive tail of the distribution,
which are abnormally extended in the long direction,
dominate the average gav. The appearance of ν2D is to
be expected as a consequence of such states: as they
percolate across the sample in Lx but not in Ly, they are
unaware of the aspect ratio, and thus display the 2D critical
behavior. However, they are exponentially rare, which
explains the vanishing amplitude of the signal and its
presence in gav but not gtyp. An exponential tail in the
distribution of electron localization lengths Pðξ=LyÞ can be
seen in Fig. 3(d); details on the definition and calculation
of ξ, as well as additional data, are provided in Ref. [40].
Discussion.—We have investigated the fate of the quan-

tum Hall plateau transition when the thermodynamic limit
is taken in one dimension only. Through numerical
diagonalization, we have uncovered surprising and counter-
intuitive behavior: Anderson localization across the spec-
trum, accompanied by the proliferation of Chern states.
This led us to investigate the fate of the Chern number, a
two-dimensional topological invariant, in the quasi-one-
dimensional limit defined by a ¼ Lx=Ly ≫ 1. In the thin-
torus limit Ly ≪ 1, the system maps onto a 1D Anderson
model with a Thouless pump parameter that smoothly

shifts the random chemical potentials. During a pump
cycle, electrons follow a random walk between resonant
orbitals on the chain. We have shown that winding number
W of the random walk around the system equals the
Chern number C of the associated electron wave function.
This identification leads to some striking predictions, e.g.,
that generic states in this limit have large, random Chern
number.
We have further shown that the above picture is valid

away from the thin-torus limit, i.e., for Ly > 1, as long as
the torus aspect ratio a is large enough. The crossover
between 2D and 1D behavior as a is increased starts at the
band center and spreads towards the band edges. The
broadening is predicted to be extremely slow, ∼

ffiffiffiffiffiffiffiffiffiffiffi
lnðaÞp

,
but it is nonetheless visible in our numerics at Ly ∼Oð10Þ,
quite far from the thin-torus limit.
On a theoretical level, our findings provide a new

example of subtle interplay between topology and disorder
[44–49]. The idea of topological pumping, which goes
back to Thouless [38], is a subject of rising theoretical
interest, especially in connection to Floquet physics
[50–53] and synthetic dimensions [54]. Here it is applied
in a new, disordered context, where it provides the key to
interpret the quasi-1D limit of the quantum Hall plateau
transition.
We concludewith some remarks related to experiment. As

the nonlocal avoided crossings that underpin the picture
presented here are generally very narrow (exponentially in
system size), the adiabatic timescales required to observe this
behavior in macroscopic systems are unphysically long.
However, for microscopic systems, the manipulations
required may still be performed adiabatically. The necessary

(a) (b)

(c) (d)

FIG. 3. (a) The average Thouless conductance gavðEÞ for Ly ¼
14 decays with increasing Nϕ. (b) The normalized quantity
gavðEÞ=gavð0Þ shows scaling collapse under E ↦ EL1=ν2D

x with
critical exponent ν2D ≃ 2.4. (c) Distribution of log10 gð0Þ for
Ly ¼ 10, increasing Nϕ. (d) Distribution of localization length ξ
for the same system sizes. An exponential tail P ∼ e−cξ=Ly

develops as Nϕ increases.

(a)

(b) (c)

FIG. 2. (a) Density of C ¼ 1 states ρ1ðEÞ for Ly ¼ 10 and
varying aspect ratio a. (b) Full width at half maximum of ρ1
indicates broadening consistent with Eq. (5). (c) Rescaling the
energy by

ffiffiffiffiffiffiffiffiffiffi
lnðaÞp

collapses the curves for different sizes.
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ingredients for a quantum simulation of this problem are
(i) adiabatically tunable, pseudorandom on-site chemical
potentials, (ii) nearest-neighbor hopping, and (iii) sufficiently
long coherence times (relative to the required adiabatic
timescale). Clean Thouless pumps have been successfully
engineered using ultracold bosonic [55,56] or fermionic [57]
atoms in optical superlattices, single spins in diamond [58],
Bose-Einstein condensates [59], and quantum dots [60,61];
adding disorder could be an interesting new direction for
these and other experimental platforms. Finally, while
implementing periodic boundary conditions (i.e., arranging
the qubits on a circle) in some such platforms may be
problematic, the striking coexistence of Anderson localiza-
tion and nonlocal charge transport across the length of the
one-dimensional quantum simulator would be observable
even on an open line segment.

This work was supported by DOE BES Grant No. DE-
SC0002140. We acknowledge useful conversations with
Shivaji Sondhi.
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