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We propose a scheme for global optimization with first-principles energy expressions of atomistic
structure. While unfolding its search, the method actively learns a surrogate model of the potential energy
landscape on which it performs a number of local relaxations (exploitation) and further structural searches
(exploration). Assuming Gaussian processes, deploying two separate kernel widths to better capture rough
features of the energy landscape while retaining a good resolution of local minima, an acquisition function
is used to decide on which of the resulting structures is the more promising and should be treated at the first-
principles level. The method is demonstrated to outperform by 2 orders of magnitude a well established
first-principles based evolutionary algorithm in finding surface reconstructions. Finally, global optimi-
zation with first-principles energy expressions is utilized to identify initial stages of the edge oxidation and
oxygen intercalation of graphene sheets on the Ir(111) surface.
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In materials science and physical chemistry, the search
for optimal structure is a recurring task, e.g., in describing
crystalline defects, such as grain boundaries [1] and surface
reconstructions [2,3], and in modeling heterogeneous
systems such as binary compounds [4,5] and supported
nanoparticles [6–8]. Depending on the search strategy and
the complexity of a given problem, many thousands of
energy and force evaluations may be required for the
structural candidates in the course of the search. The
results of these calculations constitute a set of structure-
energy relation data points which represents a valuable
resource that can direct the search. If the energy calcu-
lations are done at a first-principles (FP) level using density
functional theory or quantum chemical methods, the
computational bottleneck lies in performing the individual
energy-force evaluations and considerable speed-ups may
be achieved by introducing machine-learning (ML) tech-
niques that utilize this resource and provide tools to
minimize the total amount of FP calculations.
As a first approach, the ML model can be trained in

advance of the search on a database of structures and FP
properties. The entire search, including local relaxations,
can then be performed on this machine-learned surrogate
energy landscape. Here, regression models based on
kernels, invariant polynomials, and neural networks have
all proven successful in a number of studies [9–12] and are
drastically changing the field of fitting force fields [13–17].
Since the models are all interpolative and give reliable
results only within their training domain, prefitted models
have the drawback that they require the expensive gen-
eration of a large, diverse database of training data to be
successfully applied to a structure search problem.
A more data efficient approach is to start from a small

incomplete training database and then augment it on the fly

only with the data deemed most relevant [18–26]. This is
the philosophy in the area of active learning [27,28]. It was
recently demonstrated in the context of an evolutionary
algorithm (EA) structure search framework, where an
artificial neural network was trained and used for local
relaxation while the EA acted only on FP single-point
energy evaluations [8]. Active learning approaches have
been extensively applied in molecular dynamics simula-
tions [29–33] with data efficient training databases as a by-
product. It has also been applied in local optimization
problems such as local relaxation [34,35] and in minimum
energy path determination with the nudged elastic band
method [36–38]. Local optimization problems lend them-
selves particularly well to the construction of surrogate
energy landscapes as a Cartesian coordinate representation
of atoms may be adopted.
When a surrogate energy landscape is trained via active

learning, the issue arises which next computationally expen-
sive FP single-point energy to evaluate. In this work, we
present a strategy for global optimization with first-principles
energy expressions (GOFEE) that utilizes Bayesian statistics
in the context of Gaussian processes (GP) [39]. This frame-
work allows for the estimation of the uncertainty in any
prediction on the surrogate energy landscape, which provides
the foundation for an acquisition function that guides the
search. The virtues of the proposedmethod are the following:
(1) It uses the Bayesian surrogate model to perform cheap
relaxations of new candidate structures. (2) In each search
iterationmultiple new candidates are surrogate relaxed at low
computational cost. Themodel is used to selectwhich of these
to evaluate at the expensive FP level. (3) It utilizes two
separate kernel widths to improve the surrogate model. A
number of examples of considerable speed-ups, obtained
using the method, are given for inorganic surface structures.
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The degree of success achievable by any surrogate based
search method is largely dependent on the quality of the
surrogate model [22,23]. In this work, the GP regression
method is adopted partly because of its tractable simplicity
and partly because GPs are expected to behave well, as
the number of training examples increases during the
search, due to the adaptive predictive power inherent to
nonparametric methods.
The task of GPs is to infer a distribution over functions,

here pðEsurjX;EÞ, that is consistent with a training set of
observed atomic configurations X ¼ ðx1;x2;…;xNÞT and
their corresponding energies E ¼ ðE1; E2;…; ENÞT . To
include the symmetries of the system, xi is taken to be
the feature vector for the ith configuration rather than the
Cartesian coordinates. We adopt the global fingerprint
feature from Oganov and Valle [40], however, the method
is expected to work equally well with other features. For
GPs, the distribution is assumed to be normal, which
enables the estimation of not only the energy EsurðxÞ as
the mean of the distribution, but also the predictive
uncertainty σsurðxÞ. As will be discussed later, the pre-
dictive uncertainty is useful in a search context, as it allows
the distinction between explored and unexplored regions
of the search space.
A Gaussian process is specified by its prior mean

function μðxÞ and covariance function kðxi;xjÞ, which
encodes prior assumptions about the target function.
Given these, energy and uncertainty predictions for a
new structure x� are carried out using [39]

Esurðx�Þ ¼ kT� ðK þ σ2nIÞ−1½E − μðxÞ� þ μðxÞ; ð1Þ

σsurðx�Þ2 ¼ kðx�;x�Þ − kT� ðK þ σ2nIÞ−1k�; ð2Þ

where K¼kðX;XÞ and k� ¼kðX;x�Þ and the target func-
tion is assumed noisy with uncertainty σ2n ¼ 10−5 eV2,
which acts as regularization. To include the repulsive
atomic core generally present, the prior mean function is
taken to be a conservatively chosen repulsive interatomic
potential, specifically μðxÞ ∝ P

ijð0.7rCD;ij=rijÞ12, where
rij and rCD;ij are the distance and covalent distance between
atom i and j. This is especially beneficial in a structure
search context, where the fine details of the repulsive part
of the potential are not crucial, unlike the near equilibrium
part of the potential. The covariance function was chosen
to be a sum of two Gaussian covariances

kðx;x0Þ ¼ θ0½ð1 − βÞe−ðx−x0Þ2=ð2λ21Þ þ βe−ðx−x0Þ2=ð2λ22Þ�; ð3Þ

with characteristic length scale λ1 and λ2, respectively,
maximal covariance θ0, and weights given by β ¼ 0.01.
Figure 1 shows, for a simple problem, how the surrogate

energy landscape improves as more data are added to the
training set. The system considered is naphthalene, con-
strained, for illustrative purposes, to change only according

to the two coordinates specified. The resulting 2D slice of
the full energy landscape contains four local minima
including naphthalene itself. With only N ¼ 3 training
examples near one local minimum, the model is able to
predict the locations of the remaining minima to approx-
imately coincide with those of the true energy landscape.
In the search we will take advantage of this, and conduct
most of the search, specifically all local relaxations, in the
surrogate energy landscape, which is orders of magnitude
faster than FP calculations. As illustrated in the figure, a
structure relaxed with the model can then be evaluated with
a single FP calculation and used to update the model.
Relying entirely on the surrogate model to guide the

search has the drawback that the data collection process,
vital to actively improving the model, is itself model
dependent. This interplay has a tendency to cause under-
exploration of the search space and in turn lead to
premature stagnation of the search. The minimum belong-
ing to naphthalene in Fig. 1 is an example that the true
depth of a minimum might be underestimated until appro-
priate data have been collected. To remedy this problem we
bias data collection towards unexplored regions of the
search space, using the predictive uncertainty σsurðxÞ as a
natural way to quantify this. In practice, this is done by
introducing an acquisition function fðxÞ to be minimized,
which relies on both the predicted energy and uncertainty.
This function is used to determine which, out of multiple
new candidates, generated in each search iteration, to select

FIG. 1. Example of a surrogate guided structure search in a
two dimensional search space. The two artificial dimensions are
constructed by perturbing naphthalene as depicted in the top left.
The FP energy landscape is shown in the top right. In the bottom,
the surrogate landscape resulting from N ¼ 3, 4, and 5 training
structures is shown. Note that training structures 4 and 5 result
from local relaxation in the surrogate landscape.
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for FP evaluation. There exist multiple choices for such an
acquisition function [41] including the lower confidence
bound

fðxÞ ¼ EsurðxÞ − κ · σsurðxÞ; ð4Þ

used in this work due to its simplicity. Here κ is a unitless,
tunable parameter determining the emphasis on the pre-
dicted uncertainty and thus the degree of exploration in
the search.
The surrogate model is central to the GOFEE search

method sketched in Fig. 2. The main ideas are the
generation of Nc new candidates, derived from the pop-
ulation, in each search iteration and subsequent relaxation
of all these using the surrogate model. Out of all surrogate-
relaxed structures only the one with the lowest value of the
acquisition function is selected for two FP single-point
evaluations. Relaxing multiple new candidates in each
search iteration takes full advantage of the inexpensiveness
of the surrogate model, and can be well parallelized. When
updating the surrogate model, the parameters λ1, λ2, and θ0,
are automatically determined using multirestart gradient
based optimization of the marginal likelihood [39] of the
model given the data, a quantity inherent to GP models.
The bounds used during hyperparameter optimization are
1 ≤ λ1, λ2 ≤ 103, and 1 ≤ θ0 ≤ 106. As seen from Fig. 3(a)
two separate kernel widths are clearly favored. This
enhances the models capacity to capture both the long
range features of the energy such as large energy funnels, as
well as allowing for sufficient resolution of local minima.
As a first example using GOFEE we considered

the SnO2ð110Þ − ð4 × 1Þ surface, for which the global
minimum (GM) structure, see Fig. 3(b), is known [3].
Figure 3(c) shows the cumulative success curves for finding
the GM with this method as well as with the well
established EA [42] originally used to find the structure
[3]. Noting the broken axis, the figure shows a 2 orders
of magnitude decrease in the number of FP calculations
required to reach, e.g., 80% success. This is largely
attributed to the fact that this method relies only on FP
for single-point calculations. In Fig. 3(d) the effect of the
exploration promoting parameter κ is visualized. The figure
shows the feature space coordinates, projected into two
dimensions using principal component analysis, of struc-
tures visited in three independent GOFEE restarts
deploying κ ¼ 1, 2, 4, respectively. A more detailed figure
is shown in Fig. S1 along with the evolution of the
prediction error in Fig. S2. We have used κ ¼ 2 for all
applications. GOFEE was further applied to a number of
diverse problems including the shape of C24 clusters [43],
the surface reconstructions of Sið111Þ-ð7 × 7Þ [44] and
anatase TiO2ð001Þ-ð1 × 4Þ [2], and a high pressure bulk
phase of CaH6 [45]. The results for these systems are
presented in the Supplemental Material [46], Figs. S3–S9.

To demonstrate the versatility of the GOFEE method we
proceed to address the hitherto prohibitively complex
problems of determining the edge structure of graphene
patches on Ir(111) as well as that of the oxidized edge. For
this application we will use GOFEE with fixed kernel
widths, l1 ¼ 10 and l2 ¼ 0.5, as opposed to optimized, as
this is more efficient for larger systems as seen for the
TiO2ð001Þ-ð1 × 4Þ example in Fig. S4. For fixed kernel

FIG. 2. Key elements of GOFEE. (i) Creation and FP evaluation
of random initial structures. (ii) Addition of new FP data to
training database and training of surrogate model. (iii) Generation
of multiple new candidate structures by applying mutation
operations to a diversified population of the best structures,
currently found in the search. (iv) Local relaxation of the
population and all new candidates,Nc in total, using the surrogate
model. (v) Selection of the most promising relaxed candidate
using the acquisition function. (vi) Single-point FP evaluation of
the chosen structure and, to benefit from the rich information
content of the FP forces, another on the same structure perturbed
slightly along the forces. This is the bottleneck in the search,
tFP > tML. Finally, the search is carried out by repeating steps
(ii)–(vi). Steps (iii)–(iv) are easily parallelized by handling each
new candidate on separate computer cores.
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widths, θ0 is given by the analytic expression [39]
θ20 ¼ yTKy=N. The resulting structures are used to study
the atomistic mechanisms involved in intercalation of
oxygen in the system. The intercalation process has been
intensively studied experimentally for Ir(111) [47–49] and
involves dissociative adsorption and diffusion of oxygen as
well as penetration of the graphene edge. Although experi-
ments suggest [47] that the limiting step for the interca-
lation process is this edge penetration, it is not well
understood.
In our contribution to fill this gap, intercalation through

the nonoxidized edge was first considered. Figure 4(a)
shows the most stable edge structures found when varying
the number of carbon atoms present in the cell. Using the
energy of carbon within the graphene patch as reference,
the energies are compared in Fig. 4(b), showing that the
preferred structure is not the perfect edge (A), but instead
the structures with one (A-1) and three (A-3) carbon atoms
less on the edge, both of which feature pentagonal rings

(see Fig. S10). This can be attributed to these structures
avoiding unfavorable C-Ir bonds in the position of largest
mismatch between the periodicities of the edge and surface.
Despite small gaps in the graphene edge, none of these
structures will allow oxygen intercalation, with energy
barriers all above 2 eV
The structure of the oxidized graphene edge was also

considered. Searches are performed with up to three oxy-
gen atoms in the cell. The resulting structures and energies
are depicted in Fig. 4(c) (B −D) and 4(d). They display a
preference for oxidizing the edge with the oxidized region
partially detaching from the surface when two or more
oxygen atoms are present. This results in a significant
gap in the edge, likely of accommodating intercalation.
Figure 4(c) (E −G) (Fig. S11) further shows the structures
resulting from extending this trend up to six oxygen atoms.
As energy reference, atomic oxygen adsorbed on the
iridium surface is used. Based on the energies, the size
of the gaps are thermodynamically self-limiting, as edge
oxidation is only thermodynamically favored up to four
oxygen atoms. Further oxidation requires breaking of
increasingly strong C―Ir bonds.

(a) (b)

(c)

(d)

FIG. 3. The SnO2ð110Þ − ð4 × 1Þ test system. (a) Crosses: The
optimized kernel widths after 200 visited structures of 20 GOFEE
restarts. Contour: the log marginal likelihood [39], for fixed λ1
and λ2 and optimal θ0, averaged over the same 20 datasets.
(b) GM of the system. (c) Success curves for finding the GM
when using GOFEE with fixed (gray) and optimized (blue)
hyperparameters compared to an EA. (d) 2D principal component
analysis visualization of structures visited in three different
GOFEE restarts with κ ¼ 1, 2, 4, respectively. The two principal
components were found from a dataset of ≈4000 structures from
10 GOFEE restarts, on which they explained 77% of the variance.

(a) (b)

(c)

(e) (f) (g)

(d)

FIG. 4. (a),(b) The most stable structures from the search and
their energies shown for the edges with 0–5 carbon atoms less
than the perfect edge. (c),(d) Structures and energies for oxygen
added to the perfect edge. Structures (E, G) are made by hand,
motivated by the trend from structures (B −D). Finally, lowest
energy CI − EB curves are given for (e) inserting a surface
adsorbed oxygen atom to the perfect edge (A), (f) inserting the
third oxygen atom, and (g) intercalation of an oxygen atom below
the edge of structure (E). In the search, the second layer of
iridium is kept fixed, while the upper layer is allowed to relax a
maximum of half a covalent distance away from the bulk
positions.
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To study whether these oxidized edge structures are
likely to form and contribute to the intercalation process
under typical experimental conditions, lowest energy
paths were calculated using the climbing image elastic
band (CI − EB) nudged elastic band type method [50].
Figures 4(e) and 4(f), (Figs. S12 and S13), respectively,
show the energy profiles for inserting the first and third
oxygen to the edge revealing the third oxygen to be the
more expensive of the two with an energy barrier of
1.23 eV. However, oxygen intercalation experiments typ-
ically feature large oxygen coverages on the iridium sur-
face, resulting in weaker bonding of the adsorbed oxygen
as this coverage builds up. This effectively lowers the
barriers, as the transition state for binding to and opening
the graphene edge is expected to remain unchanged. The
effect is depicted in Fig. 4(f) showing in red how desta-
bilizing the oxygen, adsorbed in front of the edge, reduces
the calculated barrier to 0.76 eV. Figure 4(g) (Fig. S14)
shows the energy profile for the intercalation of an oxygen
atom through the edge gap of structure E, displaying a
barrier of 0.93 eV, which, as discussed above, will also be
lower at realistic oxygen coverages.
In conclusion, we have formulated a machine-learning

enhanced structure search method, deploying two separate
kernel widths, and used it to solve a previously prohibi-
tively hard problem. The underlying PYTHON implementa-
tion is available in [51].
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