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Rotationally resonant metamaterials are leveraged to answer a longstanding question regarding the
existence of transformation-invariant elastic materials and the ad hoc possibility of transformation-based
passive cloaking in full plane elastodynamics. Combined with tailored lattice geometries, rotational
resonance is found to induce a polar and chiral behavior, that is, a behavior lacking stress and mirror
symmetries, respectively. The central, and simple, idea is that a population of rotating resonators can exert a
density of body torques strong enough to modify the balance of angular momentum on which hang these
symmetries. The obtained polar metamaterials are used as building blocks of a cloaking device. Numerical
tests show satisfactory cloaking performance under pressure and shear probing waves, further coupled
through a free boundary. The work sheds new light on the phenomenon of resonance in metamaterials and
should help put transformation elastodynamics on equal footing with transformation acoustics and optics.
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The peculiar behavior of locally resonant metamaterials
has long been understood within Cauchy’s model of elas-
ticity albeit with constitutive properties that are frequency
dependent and possibly negative [1,2]. Thus, for instance,
when the elastic (bulk or shear) modulus and mass density
are both positive, the metamaterial exhibits a dispersive
passing band; when either one is negative but not the other,
the metamaterial exhibits a stop band; and when both are
negative, the metamaterial exhibits a passing band with a
negative refractive index [3,4]. However, as we show here,
resonance has other profound effects on wave motion that
escape the paradigm of frequency-dependent effective
parameters. In particular, we demonstrate how rotational
resonance modifies not only the values of the effective
moduli but the very form of the elasticity tensor as well.
The conventional form of the elasticity tensor is strongly

constrained by a number of symmetries [5]. Theminor index
symmetries (aijkl ¼ ajikl ¼ aijlk) are equivalent to the sym-
metry of Cauchy’s stress tensor; they stem from the balance
of angularmomentum and reduce the number of independent
coefficients in a two-dimensional elasticity tensor a ¼ aijkl
from 16 to 9. The major index symmetry (aijkl ¼ aklij)
derives from the existence of a strain energy and further
reduces that number to 6. Then isotropy, understood as
invariance under proper rotations, specifies the form of a into

aijkl ¼ μðδikδjl þ δilδjkÞ þ ðκ − μÞδijδkl; ð1Þ

leaving only two independent coefficients, the bulk and shear
moduli κ and μ. Notably, without asking for it, a has mirror
symmetry [6,7]. Rotational resonance shakes this state of
affairs: it generates torques strong enough to modify the

balance of angular momentum thus dissolving stress sym-
metry and, with it, mirror symmetry. The elasticity tensor a
then gains two resonance-induced degrees of freedom, one
quantifying chiral effects due to the loss of mirror symmetry
and one quantifying polar effects due to the loss of stress
symmetry.
Accordingly, resonance effectively widens the design

space of elastic materials to include polar metamaterials
with dynamically broken stress symmetry. In the material,
resonance-induced chirality and polarity are distinct from
those usually observed due to size-dependent effects in
micropolar elasticity. Thus, the polar metamaterials intro-
duced here are permitted to tune the shape of the elastic
behavior in the deep subwavelength limit. As an applica-
tion, polar metamaterials in the form of resonant hexachiral
lattices are shown to be suitable for the realization of elastic
cloaks. We numerically demonstrate how, at the resonance
frequency, a spatial gradient of these lattices can guide
coupled pressure and shear waves around a cloaked region
with minimal scattering. The theory underpinning the
proposed cloak has been described in earlier work [8,9]
and substantiated leveraging grounded torsional springs for
the production of the necessary torques [10]. Here, thanks
to rotational resonance, we bypass the need for active
intervention, through grounding or other infrastructure, and
provide the first “no-strings-attached” portable and passive
metamaterial-based solution, which could be easily imple-
mented in practical applications.
Consider the chiral lattice sketched on Fig. 1(a) for

starters. Each of its unit cells hosts a rigid mass capable
of translation and rotation in the plane and connected
through hinges to a set of massless elastic rods. We are
interested in the behavior of the lattice in the
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homogenization limit; i.e., when the unit cell size is
infinitely small compared to the typical propagated wave-
length. In that regime, the lattice displays an elastic behavior
with elasticity tensor a given by

aijkl ¼ μðδikδjl þ δilδjk − δijδklÞ; ð2Þ
where

μ ¼ k
ffiffiffi

3
p

=4 ð3Þ
is shearmodulus, k being the spring constant of the rods. The
bulk modulus on the other hand is zero because the lattice
can expand equally in all directions without stretching any
rods [Fig. 1(b)]. More relevant to our purposes is the
following conundrum: while the lattice is chiral for any
twisting angle γ ≠ 0, tensor a is systematically mirror
symmetric. This is due to the conspiracy of space dimen-
sionality, the index symmetries and isotropy, as portrayed in
the introduction. Together, these constraints leave no room
in a to express a chiral behavior.
Next, let us embed within each mass a rigid core coated

with a soft light material [Fig. 1(c)]. The obtained mass-in-
mass resonator has two resonance frequencies ωt and ωr
corresponding to translational and rotational oscillation
modes and depicted in Fig. 1(d) (see, e.g., [11,12] and
[ [13], Appendix A] for expressions). The translational
motion of the core modifies the balance of linear momen-
tum. It generates a frequency-dependent body force which

can be absorbed into the expression of effective mass
density

ρ ¼ M
A
þ m=A
1 − ω2=ω2

t
; ð4Þ

whereM andm are the outer and inner masses, respectively,
A is the unit cell area, andω is angular frequency. Otherwise,
the translational motion of the inner mass has no influence
on a. By contrast, the rotational motion of the inner mass
modifies the balance of angular momentum. As mass M
rotates through an angle Ψ, it perceives a restoring torque
equal to −ηΨ where

η ¼ −ω2
i

1 − ω2=ω2
r

ð5Þ

is an effective torsion stiffness and i is the moment of inertia
of the inner mass [ [13], Appendix B]. It is important to
remain consistent with the premises of homogenization here
by maintaining that ω is infinitely small when compared to
the typical cutoff frequency ωc ∝

ffiffiffiffiffiffiffiffiffiffi

k=M
p

. Accordingly, the
torques −ηΨ ∝ ω2i can be neglected except near the rota-
tional resonance where the small denominator 1 − ω2=ω2

r

conveniently tames the small numerator ω2i. This is
assumed henceforth; specifically, wework in the asymptotic
regime ω ¼ ωr þ δω ≪ ωc where δω=ωc ∝ ω3

r=ω3
c and the

torsional stiffness

η ¼ ω3
r

2δω
i ¼ ω3

r=ω3
c

2δω=ωc
ω2
ci ð6Þ

is of leading order, which depends little on the geometry of
the resonators. With that in mind, and by Cauchy’s second
law of motion, the stress tensor σ satisfies

σ12 − σ21 ¼ −
ηΨ
A

; ð7Þ
that is: the asymmetric part of stress is equal to the externally
applied torque density. What is more is that a then no longer
needs to enforce the minor symmetries, meaning that, while
remaining isotropic, it can in principle express chirality.
Direct calculations confirm these predictions. We find

aijkl ¼ μ

�

η − 12b2k
ηþ 12b2k

RjiRlk þ RliRjk þ δikδjl

�

; ð8Þ

where b is the radius of M and R is the plane rotation of
angle γ [ [13], Appendix C]. Since all plane rotations
commute, it is straightforward to check that a is isotropic.
Furthermore,

a1112 ¼ −a1121 ¼
2ημ

ηþ 12b2k
sin γ cos γ ≠ 0 ð9Þ

shows at once that a is both chiral and without minor
symmetries so long as γ ≠ 0. Rather than inspect a
however, it is far more insightful to write the stress-strain
relationship, say decomposed into three parts, deviatoric,
hydrostatic, and skew, as in

(d)(c)

(b)(a)

FIG. 1. Hexachiral lattices. (a) Nonresonant lattice: black
circles are rigid masses and black segments are massless elastic
rods; contact points are perfect hinges. The highlighted angle is
the twisting angle γ. (b) Isotropic zero mode: the lattice expands
(black) from its reference configuration (gray) without stretching
any rods. (c) Polar metamaterial: black disks are embedded
resonators; colored coating is elastic and massless. (d) Resonance
modes under imposed outer displacement: translational (ωt) to
the left and rotational (ωr) to the right.
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σ̃ ¼ 2μẽ; p ¼ −κt − βθ; c ¼ −βt − αθ; ð10Þ

see Figs. 2(a)–2(c). Above, (i) μ is a shear modulus that
transforms a deviatoric strain ẽ into a deviatoric stress σ̃,
(ii) κ is a bulk modulus that transforms an infinitesimal
change in area t into a hydrostatic pressure p, (iii) α is a
polarity modulus that transforms an infinitesimal rotation θ
into a body torque c, and (iv) β is a chiral coupling that
transforms a change in area into a body torque and an
infinitesimal rotation into a hydrostatic pressure. In fact, the
polar metamaterial we present here is an extension of
standard Cauchy elasticity that encompasses chiral and polar
effects without any extra degrees of freedom or extra
measures of stress.
While μ remains as it was, the other constitutive

parameters have the expressions

κ ¼ κocos2γ; α ¼ 4κosin2γ; β ¼ −2κo cos γ sin γ;

ð11Þ
with

κo ¼
η

ηþ 12b2k
k

ffiffiffi

3
p

2
: ð12Þ

From Eqs. (11) and (12), it can be concluded that (i) the
polar metamaterials feature size-independent chirality and
polarity, and (ii) stress goes back to being symmetric under
long wavelength limit by setting the dynamic parameter η
to zero.

Variations on hexachiral lattices have been previously
modeled as metamaterials with singly or doubly negative
properties [3,4,14], as micropolar media [15–17], or as
strain-gradient media [18–20] based on different homog-
enization schemes. The present asymptotic analysis shows
that the proposed resonant hexachiral lattices are best
understood, in the immediate vicinity of rotational reso-
nance, as polar metamaterials, i.e., metamaterials with
broken stress symmetry. The analysis is validated numeri-
cally by loading a single unit cell and plotting its response
against frequency. The results for κ are shown in Fig. 2(d);
the other parameters have identical profiles up to a scaling
factor. It is noteworthy that, near resonance, κ changes sign
suggesting that, for suitably chosen ωt and ωr, a negative
refraction band can be obtained. While this is true, it holds
not because κ becomes negative per se but because κo does.
Indeed, the phase velocities squared are equal to μ=ρ and
ðμþ κoÞ=ρ and do not involve κ directly. More importantly,
an analysis based on dispersion bands alone would give
access to μ, κo, and ρ, at best, but cannot reveal any of the
interactions dictated by α and β nor uncover the underlying
broken symmetries. In particular, the fact that a is isotropic
and has broken minor symmetries makes the underlying
lattice suitable for the design of elastic invisibility cloaks
using conformal transformations [9]. This is pursued next.
A conformal transformation x ¼ ϕðXÞ preserves angles

[21,22]. Its gradient is therefore equal to a dilation of factor
λ composed with a rotation R. Starting with an original
medium fXg of shear modulus μo, bulk modulus κo and
mass density ρo, composing a stretch

λ ¼
ffiffiffiffiffiffiffiffiffiffi

ρo=ρ
p

; ð13Þ

with a rotation of angle γ, we retrieve an image medium
fxg satisfying equations (4) and (10) exactly [9]. Then, by
the principles of transformation-based cloaking, domains
fXg and fxg will be indistinguishable [23–26]. For our
demonstration, the original domain is a free half space. The
adopted transformation then creates a “cave” along the free
boundary where things can hide without being detected by
probing waves [Figs. 3(a) and 3(b)]. Clearly, the trans-
formation is not uniform. As λ ¼ λðxÞ and γ ¼ γðxÞ change
from one point x to another, the underlying lattice will need
to be graded in space [Fig. 3(c)]. This can be done once a
small uniform discretization step δ of the original domain
has been selected. Then, the lattice parameter near point x
is simply δλðxÞ. This allows to calculate the outer radius
bðxÞ ¼ δλðxÞ sin½γðxÞ�=2 of mass M and the unit cell area
AðxÞ ¼ δ2λ2ðxÞ ffiffiffi

3
p

=2. The inner radius of M is arbitrarily
set to 2b=3 and the radius of the core is set to b=3 so that the
coat’s thickness is b=3 as well.
The above scheme determines unambiguously the

geometry of the cloaking lattice. As for its constitutive
parameters, they need to solve Eqs. (3), (12), and (13).
For simplicity, we select a background medium such that

(a) (b)

(c) (d)

FIG. 2. Effective constitutive law (10): response under (a) a pure
shear, (b) a rigid rotation, and (c) a pure dilation; deformations are
illustrated on the geometry; arrows represent forces and torques.
(d) Typical profile of the effective dynamic bulk modulus in the
vicinity of ωr.
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κo ¼ 2μo in which case it is possible to work at the exact
rotational resonance frequency ω ¼ ωr. Thus, η is infinite
and the spring constant of the lattice can be determined
easily to be k ¼ 2κo=

ffiffiffi

3
p

; in particular, it is uniform
throughout the cloak. It is also possible to keep uniform
the Lamé parameters of the core’s coat; then, the inner mass
m ¼ mðxÞ is graded so as to produce the same ωr for all
resonators. Last,M ¼ MðxÞ is calculated by solving forM
in (13).
We simulated the cloaking of the cave against probing

pressure and shear waves at various angles of incidence
using the finite element solver COMSOLMultiphysics. For
convenience, the whole domain was meshed, including the
background medium, the lattice, the empty space between
the masses, and the cloaked cave [Fig. 3(d)]. Empty spaces
were assigned a massless compliant material whereas the
rigid inner and outer masses were assigned a stiff material.
The action of the elastic rods is taken into account in the
weak form of the equations by integration along the straight
lines in the meshes that connect the various neighboring
masses. Besides the free boundary, perfectly matched
layers are appended to the other three boundaries to
suppress parasitic reflections.

(a) (b)

(c) (d)

FIG. 3. Cloak’s geometry. (a) Original domain: bottom side is
free; other sides extend to infinity. Lines can be thought of as
rays, coordinate axes or a discretization grid. (b) Image (trans-
formed) domain: ϕ opens a cave along the free boundary; rays are
bent around the cave and back into their original paths as if the
cave was not there. (c) Image domain with the cloak’s micro-
structure resolved: the lattice is graded so as to fit the required
properties at each position and is truncated beyond a given
thickness. (d) Mesh used in the finite element analysis: a close up
of the region framed in (c); a few structural elements are
highlighted to facilitate their identification.

(a) (b) (c) (d)

FIG. 4. Cloaking simulations under 30° incidence: row (ij30), where i and j refer to pressure “p” or shear “s”, depicts the component of
type i under an incident wave of type j. Columns (a)–(d) correspond respectively to the original domain unaltered, the original domain
with an uncloaked void, the void cloaked with a discrete lattice and the void cloaked with a fictitious continuous material. The numerical
parameters are ωr ¼ 2π × 25 kHz; ρo ¼ 2.7 kg=m2; μo ¼ 25 MPam; the cave is semicircular with a 40 mm radius; the cloak is
approximately 280 mm × 155 mm and contains about 44 × 26 unit cells.
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The results are summarized on Fig. 4 for pressure and
shear probing waves coupled to one another through the
free boundary and incident at 30°; for other angles, see
[ [13], Appendix D]. While not perfect, the designed
resonant lattice shows satisfactory cloaking performance
as it suppresses pressure-shear [plot (sp30-b) vs (sp30-c)],
shear-pressure [plot (ps30-b) vs (ps30-c)], and Rayleigh
[plots (sp30-b) vs (sp30-c) and (ss30-b) vs (ss30-c)]
scattering. As a general observation, it seems that the shear
component carries the dominant part of the cloaking error,
in the first quadrant of plots (sp30-c) and (ss30-c) most
notably. That is because the cloak is based on the behavior
of the lattice in the homogenization limit and, at equal
frequencies, shear waves propagate at almost half the
wavelength of pressure waves. Thus, reducing the cloaking
error further requires using a smaller discretization step δ
and a larger numerical effort while the design remains
essentially the same (details in [ [13], Appendix E]). Last, a
brief analysis of the influence of small losses and of the
necessity of resonance are provided in [ [13], Appendix F].
In conclusion, transformation-based cloaking formechani-

cal waves has progressed in a number of important cases
mostly pertaining to acoustic waves in fluids [27–30], to
flexural waves in plates [31–37], and to scalar fields more
generally [38–41]. Progress in full elasticity has been slower,
impeded by the absence of materials whose behavior is
invariant under curvilinear changes of coordinates [42]. Such
materials can be designed nonetheless as lattices of sub-
wavelength structural elements [9,10]. In that process, res-
onance plays a role that goes beyond reflection and refraction
and unlocks atypical stress-strain relationships. Here, rota-
tional resonance permitted to break stress and mirror sym-
metries and granted the elasticity tensor two extra degrees of
freedom, polarity and chirality, rich enough to enable cloak-
ing. In this way, the present work established the first
theoretical and numerical evidence of resonance-based cloak-
ing in full plane elasticity thanks to the proposed polar meta-
materials. Finally, it is worth noting that a major drawback
common to all resonance-based solutions, cloaking related or
not, is their dependence over frequency. Overcoming this
limitation without involving extrinsic interactions would
constitute a significant step towards applications.
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