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We present a high-accuracy calculation of the deuteron structure radius in chiral effective field theory.
Our analysis employs the state-of-the-art semilocal two-nucleon potentials and takes into account two-body
contributions to the charge density operators up to fifth order in the chiral expansion. The strength of the
fifth-order short-range two-body contribution to the charge density operator is adjusted to the experimental
data on the deuteron charge form factor. A detailed error analysis is performed by propagating the statistical
uncertainties of the low-energy constants entering the two-nucleon potentials and by estimating errors from
the truncation of the chiral expansion as well as from uncertainties in the nucleon form factors. Using the
predicted value for the deuteron structure radius together with the very accurate atomic data for the
difference of the deuteron and proton charge radii we, for the first time, extract the charge radius of
the neutron from light nuclei. The extracted value reads r2n ¼ −0.106þ0.007

−0.005 fm2 and its magnitude is about
1.7σ smaller than the current value given by the Particle Data Group. In addition, given the high accuracy
of the calculated deuteron charge form factor and its careful and systematic error analysis, our results open
the way for an accurate determination of the nucleon form factors from elastic electron-deuteron scattering
data measured at the Mainz Microtron and other experimental facilities.
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The tremendous progress in atomic spectroscopy
achieved in the last decade led to a series of high-precision
measurements of the energy-level shifts in light atomic
systems which are important for understanding the struc-
ture of light nuclei and their charge distributions. In
particular, a series of extremely precise measurements of
the hydrogen-deuterium 1S-2S isotope shift (see Ref. [1]
for the latest update) accompanied with an accurate
theoretical QED analysis up through Oðα2Þ resulted in
the extraction of the deuteron-proton mean-square charge
radii difference [2]

r2d − r2p ¼ 3.82070ð31Þ fm2: ð1Þ

Because of its very high accuracy, this difference provides
a tight link between rd and rp and thus is important in
connection with the light nuclear charge radius puzzle. For
many years, the values for rp extracted from electron and
muon experiments showed more than a 5σ discrepancy [3].
The very recent atomic hydrogen measurements [4,5],
however, claim consistency with the analogous muonic
hydrogen experiments. The recommended value for the
proton root-mean-square charge radius has been changed to
rp ¼ 0.8414ð19Þ fm in the latest Committee on Data for

Science and Technology (CODATA) 2018 update [6], and
the deuteron charge radius was updated accordingly, by
virtue of the difference in Eq. (1). The updated CODATA
deuteron charge radius is only 1.9σ larger than the
spectroscopic measurement on the muonic deuterium [7]
but still 2.9σ smaller than the rd value from electronic
deuterium spectroscopy [8].
From the nuclear physics perspective, the charge radius

of the deuteron provides access to the deuteron internal
structure through its structure radius, which is obtained
from r2d by subtracting the contributions from the individual
nucleons and the relativistic (Darwin-Foldy) correction,

r2str ¼ r2d − r2p − r2n −
3

4m2
p
; ð2Þ

where mp is the proton mass and r2n is the neutron mean-
square charge radius. Traditionally, this relation is used to
determine r2str assuming that r2d − r2p and r2n are known. The
current value for the neutron charge radius quoted by the
Particle Data Group (PDG) is based on measurements of
the neutron-electron scattering length in four different
experiments carried out in 1973–1997 on 208Pb, 209Bi,
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and other heavy targets. The world average gives r2n ¼
−0.1161ð22Þ fm2, where the estimated error was increased
by a scaling factor of 1.3 [9]. Nevertheless, the spread in the
results on Pb and Bi is significantly larger than even the
increased uncertainty quoted by the PDG, which suggests
that the error for the neutron mean-square charge radius
might be underestimated [10].
With the recent advances in chiral effective field theory

(χEFT), theoretical analyses of low-energy few-nucleon
reactions and nuclear structure enter the precision era
[11–13]. In this Letter, we demonstrate that by employing
the nuclear forces and currents derived up through fifth
order in χEFT, a very accurate determination of rstr is
becoming possible from the analysis of the deuteron charge
form factor (FF). Equipped with this result and using the
information from the hydrogen-deuterium isotope shift
measurements given in Eq. (1), we use the relation (2)
to extract, for the first time, the neutron mean-square charge
radius from the lightest atoms.
The electromagnetic FFs of the deuteron certainly belong

to the most extensively studied observables in nuclear
physics, see Refs. [14–16] for review articles. A large variety
of theoretical approaches ranging from nonrelativistic quan-
tum mechanics to covariant models have been applied to
this problem since the 1960s; see Ref. [17] for an overview.
The electromagnetic structure of the deuteron has also been
investigated in the framework of pionless EFT [18] and
χEFT [19–25]. It is therefore crucial to emphasize the
essential new aspects of the current investigation.
(i) For the first time the calculation of the deuteron

charge FF is pushed to fifth order (N4LO) in χEFT. This is
achieved by (a) using the currently most accurate and
precise χEFT two-nucleon (2N) potentials from Ref. [26]
and (b) taking into account the short-ranged contribution to
the two-body charge density operator at N4LO.
(ii) The two-body charge density is regularized consis-

tently with the 2N potential using the improved approach
of Ref. [26], which maintains the long-range interactions.
The residual cutoff dependence of our results is verified to
be well within the truncation uncertainty.
(iii) We employ the most up-to-date parametrizations of

the nucleon FFs from the global analysis of experimental
data [27,28]. To estimate the corresponding systematic
uncertainty, we also use the results from the dispersive
analyses of Refs. [29–31], which incorporate constraints
from unitarity and analyticity and predict the small proton
radius consistent with the CODATA 2018 recommended
value [6].
(iv) A thorough analysis of various types of uncertainty

in the calculated deuteron FFs and the structure radius is
performed.
Framework.—In the Breit frame, the deuteron charge

form factor is expressed in terms of the matrix elements of
the electromagnetic current, convolved with the deuteron
wave functions as

GCðQ2Þ ¼ 1

3e
1

2P0

X

λ

hP0; λjJ0BjP; λi; ð3Þ

1

2P0

hP0; λ0jJμBjP; λi ¼
Z

d3l1
ð2πÞ3

d3l2
ð2πÞ3 ψ

†
λ0

�
l2 þ

k
4
; vB

�

× JμB ψλ

�
l1 −

k
4
;−vB

�
; ð4Þ

where e is the magnitude of electron charge, JμB is the four-
vector current calculated in the Breit frame, ψλ is the
deuteron wave function with polarization λ, and the
deuteron in the final (initial) state moves with the velocity

vB (−vB) with vB ¼ k=ð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2=4þm2

d

q
Þ ¼ k̂

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
η=ð1þ ηÞp

along the photon momentum. The relativistic corrections to
the deuteron wave functions related to the motion of the
initial and final deuterons are included along the line of
Ref. [32]. Furthermore, denoting the photon momentum
k ¼ ð0; kÞ (withQ2 ¼ −k2 ≥ 0) and the deuteron massmd,
the deuteron initial and final momenta read P ¼
ðP0;−k=2Þ and P0 ¼ ðP0;þk=2Þ, respectively, with P0 ¼
md

ffiffiffiffiffiffiffiffiffiffiffi
1þ η

p
and η ¼ Q2=ð2mdÞ2. The deuteron charge

radius is defined as follows:

r2d ¼ ð−6Þ∂GCðQ2Þ
∂Q2

����
Q2¼0

: ð5Þ

The calculation of the deuteron FFs requires two
important ingredients which need to be derived in a
consistent manner, namely, the nuclear wave functions
and the electromagnetic currents. The employed deuteron
wave functions are calculated from the state-of-the-art
χEFT 2N potentials of Ref. [26] which are among the
most precise interactions on the market. Among many
appealing features of these interactions, we especially
benefit from a simple regularization scheme for the pion
exchange contributions which (i) maintains the long-range
part of the interaction, (ii) is applied in momentum space,
and (iii) allows for a straightforward generalization to
current operators and many-body forces at tree level.
The nuclear electromagnetic charge and current oper-

ators have been recently worked out to N3LO in χEFT
using the method of unitary transformation [33–35] by our
group and employing time-ordered perturbation theory
[36–38] by the JLab-Pisa group, see also Ref. [39] for
an early study along this line. The derivation of the
electromagnetic currents and nuclear forces is carried out
using the Weinberg power counting based on the expansion
parameter Q ¼ p=Λb with p ∼Mπ being a characteristic
soft momentum scale (with Mπ denoting the pion mass)
and Λb referring to the breakdown scale of the chiral
expansion. This implies that the contributions to the charge
operators relevant for our study appear at orders Q−3 (LO),
Q−1 (NLO), Q0 (N2LO), Q1 (N3LO), and Q2 (N4LO).
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To the order we are working, the single-nucleon contribu-
tion to the charge density operator in the kinematics
NðpÞ þ γðkÞ → Nðp0Þ takes a well-known form (see,
e.g., Ref. [35] and references therein)

ρ1N ¼ e

�
1 −

k2

8m2
N

�
GEðk2Þ þ ie

GME

4m2
N
ðσ · k × k1Þ; ð6Þ

where k1 ¼ ðpþ p0Þ=2,GEðk2Þ andGMðk2Þ are the electric
and magnetic form factors of the nucleon, GME ≔
2GMðk2Þ − GEðk2Þ, and mN denotes the nucleon mass.
The term eGE on the rhs of Eq. (6) emerges at LO, while all
other terms start to contribute at N3LO. Contributions to the
two-body charge density first appear at N3LO from one-
and two-pion exchange diagrams, see Ref. [34] for explicit
expressions. Most of them are of the isovector type and,
therefore, do not contribute to the deuteron FFs. The only
N3LO operator relevant for our study, to be denoted as ρ1π2N,
is a relativistic correction to the one-pion exchange. It is
proportional to unobservable phases β̄8 and β̄9 which
parametrize the unitary ambiguity of the long-range nuclear
forces and currents at N3LO. In contrast to nuclear
potentials, observable quantities such as, e.g., the form
factors must, of course, be independent of the choice of β̄8,
β̄9, and other off-shell parameters. This can be achieved
only by using off-shell consistent expressions for the
nuclear forces and currents. Specifically, to preserve con-
sistency with semilocal 2N potentials of Ref. [26], the one-
pion exchange charge density has to be evaluated using
the so-called minimal nonlocality choice with β̄8 ¼ 1=4
and β̄9 ¼ −1=4. Although the pionic contributions to the
isoscalar charge density at N4LO have not been worked out
yet, the complete expression for the contact operators at
N4LO reads [40,41] (the contact term relevant for the
quadrupole moment of the deuteron was first derived in
Ref. [18])

ρcont2N ¼ 2eGS
Eðk2ÞðAk2 þ Bk2ðσ1 · σ2Þ þ Ck · σ1k · σ2Þ;

where three low-energy constants (LECs) A, B, and C
contribute to the deuteron charge FF in one linear combi-
nation only, see Supplemental Material [42] for details. The
isoscalar electric nucleon form factor GS

Eðk2Þ is included
in the two-body operators to account for a nonpointlike
character of the NNγ vertex. The chiral expansion of the
electromagnetic FFs of the nucleon is well known to
converge slowly as they turn out to be dominated by the
contributions of vector mesons [43,44], which are not
included as explicit degrees of freedom in χEFT.
Therefore, to minimize the impact of the slow convergence
of the chiral expansion of the nucleon FFs on 2N
observables, we employ up-to-date parametrizations of
the nucleon FFs from Ref. [28] as well as from several
dispersive analyses of Refs. [29–31].

The 2N charge density operators ρ1π2N and ρcont2N have to be
derived using the same regulator as employed in the 2N
potentials. The regularization of the operators with the
single pion propagator is worked out in Ref. [26] and can be
effectively written as a substitution:

1

p2 þM2
π
→

1

p2 þM2
π
exp

�
−
p2 þM2

π

Λ2

�
; ð7Þ

where Λ is a fixed cutoff chosen consistently with the
employed 2N potential in the range of 400–550 MeV. The
prescription for regularizing the squared pion propagator
consistent with the approach used in [26] can be obtained
from Eq. (7) by taking a derivative with respect to M2

π . To
maintain consistency between ρcont2N and the corresponding
short-range terms in the 2N potential after regularization,
we exploit the fact that both can be generated from the same
unitary transformation acting on the single-nucleon charge
density and the kinetic energy term, respectively [41].
Results and discussions.—The calculated deuteron FF at

N4LO, Gth
CðQÞ, involves one unknown parameter (a com-

bination of the LECs from ρcont2N ), which is extracted from a
fit to the world data for the deuteron charge form factor
Gexp

C ðQÞ from Refs. [45–47]. Here and in what follows, the
N4LO results are obtained using the N4LOþ 2N potentials,
which include four sixth-order contact interactions in F
waves and result in a nearly perfect description of 2N data
from the Granada 2013 database [48] below the pion
production threshold.
The function χ2 to be minimized in the fit is defined as

follows:

χ2 ¼
X

i

½Gth
CðQiÞ − Gexp

C ðQiÞ�2
ΔGCðQiÞ2

; ð8Þ

where following Refs. [49,50] the uncertainty ΔGCðQiÞ
besides the experimental errors also takes into account
theoretical uncertainties from the truncation of the chiral
expansion estimated using the Bayesian approach and from
the nucleon form factors, as given in Refs. [27,28], added
in quadrature. Throughout this analysis, we employ the
Bayesian model C̄650

0.5−10 specified in Ref. [51] and assume
the characteristic momentum scale to be given by jkj=2
[22]. The results for the deuteron charge FF from the best fit
to data up to Q ¼ 4 fm−1, evaluated for the cutoff
Λ ¼ 500 MeV, are visualized in Fig. 1 together with the
N4LO truncation errors and statistical uncertainty of the
strength of ρcont2N . We have verified that the cutoff variation
in the range of Λ ¼ 400;…; 550 MeV yields results lying
well within the truncation error band and that the fits of a
similar quality can be obtained by employing the nucleon
FFs from the dispersive analyses of Refs. [29–31], see
Ref. [41] for a detailed discussion of various uncertainties.
The fit to data allows us to accurately extract the unknown
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linear combination of LECs entering the charge density
operator at N4LO and thus to make a parameter-
free prediction for the structure radius of the deuteron,
which reads

rstr ¼ 1.9731þ0.0013
−0.0018 fm; ð9Þ

with the individual contributions to the uncertainty given in
Table I. To make this uncertainty estimate conservatively,
the truncation error is actually included twice: (i) by
performing the Bayesian analysis for r2str following the
approach of Ref. [51] and (ii) through the statistical

uncertainty in the short-range charge density extracted
from the fit to Gexp

C ðQ2Þ using Eq. (8). Furthermore, we
developed a phase-equivalent version of the 2N potential
using a different choice of the unobservable phases β̄8 ¼
β̄9 ¼ 1=2 leading to ρ1π2N ¼ 0. Repeating the analysis for
this choice of β̄8;9, the value of rstr is found to agree with the
one in Eq. (9) to all given figures. The structure radius is
also robust with respect to data used in the fit: had we used
the parametrization of data by Sick [16,52] instead of
experimental data, we would have arrived at essentially the
same result. For the sake of completeness, we also present
the results of the order-by-order calculations for rstr (in
units of fm) including the truncation error from the
Bayesian analysis, 1.9� 0.4 (LO), 1.97� 0.03 (NLO),
1.969� 0.007 (N2LO), 1.969� 0.002 (N3LO), 1.9731�
0.0008 (N4LO). It is important to keep in mind that these
numbers are obtained without relying on the chiral expan-
sion of the nucleon form factors.
Relying on our theoretical prediction for the structure

radius, we are now in the position to predict the neutron
charge radius from Eqs. (1), (2), and (9), which gives

r2n ¼ −0.106þ0.007
−0.005 fm2: ð10Þ

This value is 1.7σ smaller than the one given by the
PDG [9].
In summary, we presented a comprehensive analysis of

the deuteron charge form factor up to fifth order in χEFT.
The only unknown parameter enters the short-range 2N
contribution to the charge density operator and is deter-
mined from the best fit to the deuteron charge form factor.
Equipped with this information, we make a parameter-free
prediction for the structure radius of the deuteron and
perform a thorough analysis of various kinds of uncertainty.
The high-accuracy calculation of the structure radius,
together with the high-precision measurement of the hydro-
gen-deuterium 1S-2S isotope shift [1], have allowed us to
extract the neutron charge radius.
Although it is natural to expect that the two-pion

exchange contributions to the charge density at N4LO,
which have not yet been worked out, are largely saturated
by the short-range contributions included in this analysis,

FIG. 1. Deuteron charge FF from the best fit to data up to
Q ¼ 4 fm−1 evaluated for the cutoff Λ ¼ 500 MeV (solid red
lines). Band between dashed (red) lines corresponds to a 1σ error
in the determination of the short-range contribution to the charge
density operator at N4LO. Light-shaded (orange dotted) band
corresponds to the estimated error (68% degree-of-belief) from
truncation of the chiral expansion at N4LO. Open violet circles
and green triangles are experimental data from Ref. [45] and
Refs. [46,47], respectively. Black solid circles correspond to the
parametrization of the deuteron FFs from Refs. [16,52] which is
not used in the fit and shown just for comparison. The rescaled
charge FF of the deuteron, GCðQÞscaled, as defined in Ref. [16], is
shown on a linear scale.

TABLE I. Deuteron structure radius squared predicted at N4LO in χEFT (first column) and the individual
contributions to its uncertainty: from the truncation of the chiral expansion (second), the statistical error in the short-
range charge density operator extracted from GCðQ2Þ (third), the errors from the statistical uncertainty in πN LECs
from the Roy-Steiner analysis of Ref. [53,54] propagated through the variation in the deuteron wave functions
(fourth), the errors from the statistical uncertainty in 2N LECs extracted from the Granada 2013 2N database in
Ref. [26] (fifth), the error from the choice of the maximal energy in the fit (sixth), as well as the total uncertainty
evaluated using the sum of these numbers in quadrature (seventh). All numbers are given in fm2.

r2str Truncation ρcont2N πN LECs 2N LECs Q range Total

3.8933 �0.0032 �0.0037 �0.0004 þ0.0010
−0.0047

�0.0017 þ0.0053
−0.0070
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the complete χEFT calculation at this order would allow for
an additional test of the estimated theoretical uncertainty.
The results for the deuteron charge FF presented here

pave the way for an accurate determination of the isoscalar
nucleon FF by (re)analyzing the experimental data on
elastic electron-deuteron scattering at MAMI (see, e.g.,
Ref. [55] for the new measurement of the elastic ed
scattering cross section at 0.24 fm−1 ≤ Q ≤ 2.7 fm−1 at
MAMI), Saclay [56], and other facilities.
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