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In this Letter we study an infinite extension of the Galilei symmetry group in any dimension that can be
thought of as a nonrelativistic or post-Galilean expansion of the Poincaré symmetry. We find an infinite-
dimensional vector space on which this generalized Galilei group acts and usual Minkowski space can be
modeled by our construction. We also construct particle and string actions that are invariant under these
transformations.
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Nonrelativistic physics can be obtained from relativistic
physics via an expansion in 1=c where c is the velocity of
light [1]. At the level of symmetries, it is well known that
the strict c → ∞ limit of the relativistic Poincaré group
yields the Galilei group of non-relativistic symmetries via
Wigner–Inönü contraction [4]. The non-relativistic gravity
theory of Newton is only invariant under the Galilei group
and it is not known how to obtain the associated (Newton–
Cartan) Lagrangian from the relativistic Einstein-Hilbert
action. Corrections to the nonrelativistic Newtonian theory
at higher order in 1=c are famously important for the
original experimental evidence for general relativity;
see, for example, Refs. [5,6] for discussions. Besides the
expansion in 1=c there can be physical situations with
multiple parameters that can be small such as the space-
time curvature (in units related to the Newton constant).
The precise meaning of “post-Newtonian expansion” then
depends on which parameters are considered small [7].
Our approach here relies on 1=c corrections only and starts
from the Galilei symmetry and we therefore refer to our
approach as “post-Galilean.” Higher-order (parametrized)

post-Newtonian corrections to the Keplerian two-body
motion are also of central importance in current investiga-
tions of binary gravitational wave sources [8–12] and post-
Newtonian corrections have also been investigated in the
context of cosmology and structure formation, see, for
instance, Ref. [13]. The effective one-body approach
[10,14] was inspired in part by the developments of the
classical mechanical relativistic two-body problem [15–18].
One common feature of truncated post-Galilean or post-

Newtonian expansions is that they inherently do not preserve
the full relativistic symmetries. As an early example, the
quantum-mechanical Breit equation describes corrections of
order v=c to the two-body problem for electrons but it is not
invariant under Lorentz transformations [19]. More recently,
due to the possible applications of Newtonian gravities to
nonrelativistic holography for strongly coupled systems in
condensed matter physics, nonrelativistic gravities that are
invariant under various classes of nonrelativistic symmetry Lie
algebras have been investigated [20,21]. Subsequently, exten-
sions of the Bargmann algebra by a finite number of gene-
rators were first presented in Refs. [22–24] and these describe
the next-to-leading orders in the nonrelativistic expansion of
gravity. The construction can also be generalized to infinite-
dimensional algebras [25–27] using different approaches.
In this Letter, we exhibit a universal scheme for obtaining

post-Galilean expansions of nonrelativistic systems by means
of their symmetry algebras, starting from the Galilei algebraG.
Our scheme can be viewed as either stemming from (affine)
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Kac-Moody algebras [27] or from a Lie algebra expansion
[28–30], and it is based on an infinite-dimensional algebra,
which we will refer to as G∞. This algebra can be viewed as
including the full formal power series in 1=c of relativistic
systems. The analysis in Ref. [26] is in the context of the large
c expansion of general relativity [31–34], while our approach
is purely kinematical and provides an extension of special
relativity that describes post-Galilean physics. We introduce an
infinite-dimensional space on which this symmetry acts and
identify subspaces of finite co-dimension that are mapped to
one another by the usual action of the Poincaré algebra as a
specific combination of transformations in G∞. The infinite-
dimensional algebra G∞ admits finite-dimensional quotients
corresponding to working up to a finite order in 1=c.
The present Letter is mainly concerned with outlining

the kinematic underpinnings of this symmetry algebra.
Truncations of it have been used in a slightly different guise
to construct nonrelativistic gravity theories [22–24] that
should properly be identified as post-Newtonian gravities.
In a follow-up paper [35], we shall study field-theory im-
plementations of the symmetry structure in the framework
of three-dimensional Chern-Simons theory and also the
post-Galilean corrections of the nonvibrating nonrelativis-
tic string theory [2].
Generalized Minkowski space-time and its infinite-

dimensional symmetry.— Our starting point is the
(dþ 1)-dimensional Poincaré algebra isoðd; 1Þ written in
a noncovariant form with generators fp0; jab; ja0; pag and
nontrivial commutation relations

½jab; jcd� ¼ 4δ½c½bja�d�; ½jab; pc� ¼ 2δc½bpa�;

½ja0; jb0� ¼ jab; ½p0; ja0� ¼ pa;

½ja0; pb� ¼ −δabp0; ½jab; jc0� ¼ 2δc½bja�0: ð1Þ
Roman indices a ¼ 1;…; d are vector indices of the spatial
rotation algebra soðdÞ that is generated by jab. The other
generators will be referred to as time translation (p0), boost
(ja0Þ, and translation (pa).
We can construct an associated infinite-dimensional alge-

bra by applying themethod of infinite Lie algebra expansions
[35,36] to the previous algebra. The generators are

HðmÞ ¼c−2mþ1⊗p0, PðmÞ
a ¼c−2m⊗pa, BðmÞ

a ¼c−2m−1⊗
ja0, and JðmÞ

ab ¼ c2m ⊗ jab, which satisfy the algebra G∞:

½JðmÞ
ab ; JðnÞcd � ¼ 4δ½c½bJ

ðmþnÞ
a�d� ;

½JðmÞ
ab ; BðnÞ

c � ¼ 2δc½bB
ðmþnÞ
a� ; ½JðmÞ

ab ; PðnÞ
c � ¼ 2δc½bP

ðmþnÞ
a� ;

½HðmÞ; BðnÞ
a � ¼ PðmþnÞ

a ; ½BðmÞ
a ; PðnÞ

b � ¼ −δabHðmþnþ1Þ;

½BðmÞ
a ; BðnÞ

b � ¼ Jðmþnþ1Þ
ab : ð2Þ

This algebra can also be obtained from the positive modes
of an affine Kac-Moody [37] associated to the Galilei
algebra [27].

Thinking of the collection of all boost generators BðmÞ
a and

rotation generators JðmÞ
ab form ≥ 0 as generating a generalized

Lorentz algebra L∞, we introduce generalized Minkowski
space as the formal coset space expG∞= expL∞. We put
local coordinates on this infinite-dimensional space by
introducing coordinates tðmÞ and xaðmÞ dual to the generalized

translation generators HðmÞ and PðmÞ
a .

We now consider the action of an infinitesimal trans-
formation of the coordinates on generalized Minkowski
space under a general transformation inG∞ of Eq. (2) with

parameters αabðmÞ (for J
ðmÞ
ab ), ϵðmÞ (for HðmÞ), ϵaðmÞ (for P

ðmÞ
a ),

and vaðmÞ (for BðmÞ
a ). The infinitely many coordinates

transform as

δxaðmÞ ¼ ϵaðmÞ þ
Xm
n¼0

ðvaðnÞtðm−nÞ − δbcα
ab
ðnÞx

c
ðm−nÞÞ;

δtðmÞ ¼ ϵðmÞ þ
Xm−1

n¼0

δabvaðnÞx
b
ðm−1−nÞ: ð3Þ

Restricting only to the “zero modes” these transformations
take the form of the usual Galilei transformations on
ðtð0Þ; xað0ÞÞ. However, they differ when including higher

modes.
Recovering standard Minkowski space.—We now intro-

duce the coordinates

Xa ¼
X∞
m¼0

c−2mxaðmÞ; X0 ¼
X∞
m¼0

c−2mþ1tðmÞ; ð4Þ

that are formal power series in 1=c. Note that the coor-
dinates tðmÞ have dimension of [L2m=T2m−1], while the
coordinates xaðmÞ have dimension of [L2mþ1=T2m]. This

ensures that the coordinates X0 and Xa have both dimen-
sions of length and this is compatible with the fact that
these coordinates are associated to the Lie algebra gen-
erators of Eq. (2) that emerge from a particular expansion
of the translation algebra in powers of 1=c. Expansions of
coordinates in 1=c have already appeared in the literature in
Ref. [26]. In the following we shall sometimes write X⃗ for
the spatial vector with components Xa and use the dot
product to denote scalar products with respect to δab.
In order to understand the action of the symmetry

algebra (2) on these coordinates we focus on the boosts
[38] and introduce a similar collective series-expanded
parameter

θa ¼
X∞
m¼0

c−2m−1vaðmÞ: ð5Þ

The action of this parameter on the coordinates (4) becomes
from Eq. (3)
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δX⃗ ¼ θ⃗X0; δX0 ¼ θ⃗ · X⃗: ð6Þ

These transformations resemble formally the standard
Lorentz boosts except for the fact that θa contains an
infinity of independent components vaðmÞ. In order to

remedy this we let

vaðmÞ ¼
1

2mþ 1
v2mþ1na; ð7Þ

with the same unit vector na for all m and a single
additional parameter v. By replacing Eq. (7) in the
definition (6), we obtain

δX⃗ ¼ θ⃗X0 ¼
X∞
m¼0

1

2mþ 1

�
v
c

�
2mþ1

n⃗X0;

δX0 ¼ θ⃗ · X⃗ ¼
X∞
m¼0

1

2mþ 1

�
v
c

�
2mþ1

n⃗ · X⃗; ð8Þ

and we recover the usual expression of the rapidity
parameter in terms of the boost velocity, i.e., θa ¼ θna

with θ ¼ arctanhðv=cÞ upon using the series expansion of
arctanh [39]. The linear transformation in θ in Eq. (8)
agrees with the standard infinitesimal Lorentz boost on
Minkowski space.
While we have thus arrived at a formal agreement, the

definition (4) requires additional discussion. For fixed
ðX0; XaÞ this defines a subspace of generalized Minkowski
space of co-dimension dþ 1. The transformations (6)
we have just analyzed move between different embedded
such subspaces. For general parameters vaðmÞ they also move

the individual ðtðmÞ; xaðmÞÞ for m ≥ 0 around in a nonuni-

form manner, while Eq. (7) results in a more uniform
transformation of all ðtðmÞ; xaðmÞÞ as it only uses d indepen-

dent parameters. We thus arrive at the conclusion that we
should identify standard Minkowski space as the space of
subspaces of co-dimension dþ 1 labeled by the coordi-
nates (4). We note that identifying Minkowski space by
picking local coordinates ðctð0Þ; xað0ÞÞ ¼ ðX0; XaÞ while

setting the “higher” coordinates to zero is not suitable as
the transformations of Eq. (2) either do not preserve this
choice or lead to just Galilean boosts instead of relativistic
Lorentz boosts.
Post-Galilean expansion and finite expansions.—We

now compare the structure of the transformations (3) to
those of an expansion in 1=c of standard Lorentz boosts.
For coordinates (T, X⃗) on Minkowski space, a finite boost
with rapidity parameter θ⃗ ¼ θn⃗ and θ ¼ arctanhðv=cÞ acts
to order 1=c2 by

T 0 ¼ T þ 1

c
θ⃗ · X⃗ þ 1

2
θ⃗2T þ � � �

¼ T þ c−2v⃗ð0Þ · X⃗ þ 1

2
c−2v⃗2ð0ÞT þOðc−3Þ; ð9Þ

X⃗0 ¼ X⃗ þ cθ⃗T þ 1

2
ðθ⃗ · X⃗Þθ⃗ þ c

6
θ⃗2θ⃗T þ � � �

¼ X⃗ þ v⃗ð0ÞT þ c−2v⃗ð1ÞT þ c−2

2
ðv⃗ð0Þ · X⃗Þv⃗ð0Þ

þ c−2

6
v⃗2ð0Þv⃗ð0ÞT þOðc−3Þ; ð10Þ

where the expansion of

θ⃗ ¼ arctanhðv=cÞn⃗ ¼ 1

c
v⃗ð0Þ þ

1

c3
v⃗ð1Þ þ… ð11Þ

was introduced. When dropping consistently all terms of
higher order, these transformations close.
The step of dropping all higher order terms can be

circumvented by formally expanding also the Minkowski
coordinates according to

T ¼ tð0Þ þ c−2tð1Þ þ � � � ; X⃗ ¼ x⃗ð0Þ þ c−2x⃗ð1Þ þ � � �
ð12Þ

and reading off the coefficients at fixed order in 1=c. This
leads to

t0ð0Þ ¼ tð0Þ; x⃗0ð0Þ ¼ x⃗ð0Þ þ v⃗ð0Þtð0Þ;

t0ð1Þ ¼ tð1Þ þ v⃗ð0Þ · x⃗ð0Þ þ
1

2
v⃗2ð0Þtð0Þ;

x⃗0ð1Þ ¼ x⃗ð1Þ þ v⃗ð1Þtð0Þ þ v⃗ð0Þtð1Þ þ
1

2
v⃗2ð0Þx⃗ð0Þ þ

1

6
v⃗2ð0Þv⃗ð0Þtð0Þ:

ð13Þ

These finite transformations close without dropping any
higher order terms. Moreover, the transformations (13)
coincide exactly with the finite transformations obtained
from Eq. (3) when consistently quotienting the algebra G∞
by the ideal spanned by all generators with superscript
larger than N ¼ 1. More generally, the algebra (2) can be
truncated consistently by setting to zero all generators with
superscript larger than some fixed integer N ≥ 0. The case
N ¼ 0 corresponds to the Galilei algebra and the first line
in Eq. (13) indeed corresponds to the standard Galilean
boost on the zero modes while the transformation of
ðtð1Þ; x⃗ð1ÞÞ build up higher polynomials. This pattern per-
sists when increasing N to N þ 1: the lower transforma-
tions up to ðtðNÞ; x⃗ðNÞÞ are unchanged and the new
ðtðNþ1Þ; x⃗ðNþ1ÞÞ transform with higher degree polynomials.
The transformations (13) generate a group as the truncation
of the algebra (2) to any fixed N is a consistent Lie algebra
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quotient. We can recover the post-Galilean expansion of the
Lorentz boost to any given order c−2N from the trans-
formation of the highest coordinates ðtðNÞ; x⃗ðNÞÞ.
The quotient algebra obtained with N ¼ 1 is exactly the

one that has appeared in Ref. [22] in the context of
nonrelativistic gravity. Here, we have obtained it from a
purely kinematical analysis of post-Galilean expansions.
Invariant metric and particle dynamics.—The subspace

of the generalized Minkowski space defined for
fixed ðX0; XaÞ has an invariant metric under the trans-
formations (3) given by

ds2 ¼ −ðdX0Þ2 þ dX⃗2: ð14Þ

Using (4) we have

ds2 ¼
X∞
m;n¼0

c−2ðmþnÞð−c2dtðmÞdtðnÞ þ dx⃗ðmÞ · dx⃗ðnÞÞ: ð15Þ

Note that the term of order c0 is

−2dtð0Þdtð1Þ þ dx⃗ð0Þ · dx⃗ð0Þ ð16Þ

and is an invariant metric for the Bargmann algebra, see
Eq. (3). We also recognize it as the metric of (dþ 2)-
dimensional Minkowski space written in light-cone
coordinates. This is in agreement with the fact that the
Bargmann algebra in dþ 1 dimensions is a subalgebra of
the Poincaré algebra in dþ 2 dimensions.
From the invariant metric we can construct dynamical

systems with G∞ symmetry, for example, a particle action
for a massive particle by considering

Spart ¼ −mc
Z

dτ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
− _Xμ _Xμ

q
¼ Sð0Þ þ Sð1Þ þ Sð2Þ þ � � �

ð17Þ

with

Sð0Þ ¼ −mc2
Z

dτ_tð0Þ;

Sð1Þ ¼ m
Z

dτ

�
−_tð1Þ þ

_x⃗2ð0Þ
2_tð0Þ

�
;

Sð2Þ ¼
m
c2

Z
dτ

�
−_tð2Þ þ

_x⃗ð0Þ · _x⃗ð1Þ
_tð0Þ

−
_tð1Þ _x⃗

2
ð0Þ

2_t2ð0Þ
þ

_x⃗4ð0Þ
8_t3ð0Þ

�
; ð18Þ

where τ is the affine embedding parameter and the dot
denotes a τ derivative. The first action leading to nontrivial
dynamics is Sð1Þ, which is invariant under the Bargmann
algebra. The variable tð1Þ can be eliminated, leading to a
quasi-invariance under the Galilei algebra and to the

standard action of the massive nonrelativistic particle
invariant under worldline diffeomorphisms.
The subsequent actions SðnÞ with n > 1 describe non-

relativistic particles plus post-Galilean corrections; they are
individually invariant under Eq. (3). We will illustrate this
by considering the action Sð2Þ, which includes the coor-
dinates ðtð0Þ; x⃗ð0Þ; tð1Þ; x⃗ð1Þ; tð2ÞÞ. Because of the extra coor-
dinate tð2Þ, this action is invariant under a central extension
of the symmetry algebra realized by the transformations
(13) [this symmetry has been considered in the (2þ 1)-
dimensional case in Refs. [23,24] ], which is obtained by
adding the transformation law

t0ð2Þ ¼ tð2Þ þ v⃗ð0Þ · x⃗ð1Þ þ v⃗ð1Þ · x⃗ð0Þ þ v⃗ð1Þ · v⃗ð0Þtð0Þ

þ 1

2
v⃗2ð0Þtð1Þ þ

1

6
v⃗2ð0Þv⃗ð0Þ · x⃗ð0Þ þ

1

24
v⃗4ð0Þtð0Þ: ð19Þ

Neglecting the total derivative _tð2Þ leads to an action that is
only quasi-invariant under the transformations (13). In fact,
its variation gives total derivatives of the form dðv⃗ð0Þ ·
x⃗ð1ÞÞ=dτ and dðv⃗ð1Þ · x⃗ð0ÞÞ=dτ, which are in correspondence
with central extensions

½Bð0Þ
a ; Pð1Þ

b � ¼ −δabHð2Þ; ½Bð1Þ
a ; Pð0Þ

b � ¼ −δabHð2Þ ð20Þ

of the algebra truncated at N ¼ 1. This is in complete
analogy with the analysis of the nonrelativistic particle,
where the invariance under the Bargmann algebra can be
deduced from the quasi-invariance of the action under
Galilean transformations, which leads to the central exten-

sion ½Bð0Þ
a ; Pð0Þ

b � ¼ −δabHð1Þ [40].
Defining the canonical momenta p⃗ðmÞ ¼ ∂L=∂ _x⃗ðmÞ and

EðmÞ ¼ −∂L=∂_tðmÞ for ðtð0Þ; x⃗ð0Þ; tð1Þ; x⃗ð1Þ; tð2ÞÞ, satisfying
the Poisson brackets

ftðmÞ; EðnÞg ¼ −δnm; fxaðmÞ; p
ðnÞ
b g ¼ δnmδ

a
b; ð21Þ

leads to the primary constraints

p⃗ð1Þ · p⃗ð0Þ −
1

2
Eð1Þ2 −

m
c2

Eð0Þ ¼ 0;

1

2
p⃗ð1Þ2 −

m
c2

Eð1Þ ¼ 0;
m
c2

− Eð2Þ ¼ 0: ð22Þ

These “generalized mass-shell conditions” define first-class
constraints associated with the reparametrization invariance
of the action. They can be made second class by intro-
ducing a suitable gauge fixing [43], which in this case can
be chosen as

1

c2m
tðmÞ ¼ t ¼ τðfor all mÞ; ð23Þ
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including fixing the affine parameter. The symmetries of
the corresponding gauge-fixed Lagrangian then become
nonlinear. The generalized momenta EðmÞ are expressed
in terms of p⃗ðmÞ. Finally, by projecting the action on the
hyperplane

1

c2m
xaðmÞ ¼ xaðfor all mÞ; ð24Þ

the action Sð2Þ becomes

Sð2Þ ¼
Z

dt

�
−mc2 þm

2
_x⃗2 þ m

8c2
_x⃗4
�
: ð25Þ

Note that the conditions (24) break the symmetry [Eq. (3)]
of the gauge-fixed action. The energy and momentum for
this action are given by

E ¼ mc2 þm
2
_x⃗2 þ 3m

8c2
_x⃗4; P⃗ ¼ m_x⃗þ m

2c2
_x⃗2 _x⃗; ð26Þ

which correspond to the usual nonrelativistic relations of
energy and momentum plus their first post-Galilean
corrections.
Note that reparametrization invariance of the action

Sð2Þ defined in Eq. (18) implies that the corresponding
Hamiltonian vanishes. However, the gauge fixing condition
(23) breaks this invariance and the gauge-fixed form of Sð2Þ
has a nonvanishing Hamiltonian, which reduces to the
expression for the energy E in Eq. (26) after projecting the
spatial coordinates as in Eq. (24). On the other hand,
the expansions in 1=c given in Eq. (26) can be recovered
from the canonical momenta defined in Eq. (21) asP

m c2mEðmÞ and
P

m c2mp⃗ðmÞ, respectively, after imposing
Eqs. (23) and (24). In the same way, more general actions
SðnÞ incorporate more generalized momenta and first-class
constraints, leading to post-Galilean corrections up to order
1=c2n−2 for a nonrelativistic particle [44].
The procedure outlined above can be used to analyze

more general physical systems. For instance, one can use
the coordinate expansion (4) in the Nambu-Goto action for
a bosonic relativistic string. In the same way one can
consider the Nambu-Goto action

Sstring ¼ −
T
c

Z
dτdσ½ð _XμX0

μÞ2 − _Xμ _XμX0νX0
ν�1=2

¼ −T
Z

dτdσ½
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j_tð0Þx⃗0ð0Þ − t0ð0Þ

_x⃗0ð0Þj2
q

þ � � ��; ð27Þ

where the next-to-leading term, proportional to 1=c2,
is straightforward to compute but rather cumbersome
and therefore omitted here. Unlike the case of the relativ-
istic particle, the first term in this expansion is exactly
invariant under the Galilei algebra [2,45], while the term

proportional to 1=c2 is also invariant under (13) without the
need of adding central extensions.
Summary.—In this note, we have outlined a procedure

for systematically describing symmetries of post-Galilean
expansions through the embedding in an enlarged
space. The necessity of working up to a certain order in
the 1=c-expansion is replaced by exactly closing symmetry
transformations on an extended space. Invariant non-
relativistic particles and strings can be easily considered
in this language. The same type of symmetry algebras as
considered have appeared in the context of nonrelativistic
gravity theories [22–24]. In this context, the results shown
in Ref. [26] naturally arise when gauging this infinite-
dimensional symmetry or, in other words, from a differ-
entiable manifold whose tangent space is the generalized
Minkowski space presented here. This procedure can be
implemented in any relativistic system to define actions
invariant under truncations of G∞, which incorporate post-
Galilean corrections of the corresponding Galilean limit.
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