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We study renormalization group flows in a space of observables computed by Monte Carlo simulations.
As an example, we consider three-dimensional clock models, i.e., the XY spin model perturbed by a Zq

symmetric anisotropy field. For q ¼ 4, 5, 6, a scaling function with two relevant arguments describes all
stages of the complex renormalization flow at the critical point and in the ordered phase, including the
crossover from the U(1) Nambu-Goldstone fixed point to the ultimate Zq symmetry-breaking fixed point.
We expect our method to be useful in the context of quantum-critical points with inherent dangerously
irrelevant operators that cannot be tuned away microscopically but whose renormalization flows can be
analyzed as we do here for the clock models.
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The renormalization group (RG) is a powerful frame-
work both for conceptual understanding of phase transi-
tions and for calculations [1–3]. A key concept is that a
universal critical point can be stable or unstable in the
presence of perturbations, depending on their scaling
dimensions. Similarly, an ordered state can also be stable
or unstable under the influence of perturbations. Under a
RG process, a system flows in a space of couplings which
change as the length scale is increased under coarse
graining of the microscopic interactions, until finally
reaching a fixed point corresponding to a phase or phase
transition. At this point, all the initially present irrelevant
couplings have decayed to zero.
RG flows can also be defined by physical observables

obtained by Monte Carlo (MC) simulations, allowing
controlled finite-size scaling analysis—sometimes referred
to as phenomenological renormalization [3–6]. Here we
extend the standard finite-size scaling of a single observ-
able to an entire flow in a space of two observables
associated with relevant or irrelevant couplings. The
method is particularly useful for quantifying dangerously
irrelevant perturbations (DIPs)—those that are irrelevant at
a critical point but become relevant upon coarse graining
inside an adjacent ordered phase [7].
Scaling and RG flows.—Consider a d-dimensional

lattice model of length L which can be tuned to a critical
point by a relevant field t, e.g., the temperature (t ¼
Tc − T). With a local operator mi and its conjugate field
h, we add h

P
i mi ≡ hM ≡ hLdm to the Hamiltonian H.

In a conventional RG calculation, a flowing field h0 is

computed under a scale transformation. Here we will
instead vary the system size, which effectively lowers
the energy scale, and calculate the response hmi using
MC simulations. Together with some quantity Q character-
izing the critical point and phases of the system, we can
trace out curves (MC RG flows) ðQ; hmiÞL as L increases
for fixed values of h and T. These flows are very similar to
conventional RG flows in the space ðt; h0Þ.
The singular part of the free-energy density takes the

form fsðt; h; LÞ ¼ L−dFsðtL1=ν; hLyÞ. At t ¼ 0, the lead-
ing h dependent part is fs ∝ hLy−d, while the statistical
mechanics of H gives a contribution hhmi ∝ hL−Δ from
the internal energy. Thus, we obtain the well-known
relation y ¼ d − Δ. The perturbation is irrelevant at the
critical point if y < 0, but, in the case of a DIP, it eventually
becomes relevant as L increases in the ordered phase. It has
been known for some time that this crossover is associated
with a length scale ξ0 ∝ t−ν

0
which may diverge faster than

the correlation length ξ ∝ jtj−ν [8].
To take both divergent length scales properly into

account, i.e., to reach the regime where tL1=ν0 is large,
we adopt the two-length scaling hypothesis [9] and write

fsðt; h; LÞ ¼ L−dFsðtL1=ν; tL1=ν0 ; hLy; λL−ωÞ; ð1Þ

where we have also included a generic scaling correction
with exponent ω > 0. The exponents ν0 and y arise from the
same DIP and there is a relationship between them that has
been the subject of controversy [8,10–12]. Here we will
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derive the relationship from Eq. (1) and show how the
entire RG flow of two observables can be explained.
Models and observables.—We study three-dimensional

(3D) classical clock models on the simple cubic lattice,

H ¼ −
X
hi;ji

cosðθi − θjÞ − h
X
i

cosðqθiÞ; ð2Þ

with θ ∈ ½0; 2πÞ. Based on previous studies [8,10–16], for
q ≥ 4 the phase transition for fixed h at T ¼ Tc belongs to
the 3D U(1) universality class, i.e., the clock field h is
irrelevant. However, for T < Tc it is relevant, reducing the
order parameter symmetry from U(1) to Zq when observed
above the DIP length scale ξ0q.
In our MC simulations [17], for a given spin configu-

ration we computeMx ¼
P

i cosðθiÞ andMy ¼
P

i sinðθiÞ.
With M ¼ ðM2

x þM2
yÞ1=2 and Θ ¼ arccosðMx=MÞ, an

angular order parameter can be defined as

ϕq ¼ hcosðqΘÞi; ð3Þ

which becomes nonzero in response to the Zq field.
This quantity was used to study the length scale ξ0q
[10,11,13] (with a slightly different definition in
Refs. [10,13]), but here we will use it in a different way.
For T ≥ Tc, ϕq → 0 when L → ∞, while ϕq → 1 for
T < Tc. We will use ϕq in combination with the Binder
cumulant, U ¼ 2 − hM4i=hM2i2, which takes the limiting
forms U → 0 (T > Tc), U → 1 (T < Tc), and U → UXY ≈
0.757 (at T ¼ Tc with 3D XY universality [18]).
MCRG flows.—Figure 1 shows flows of ðU;ϕqÞL for the

q ¼ 6 “hard” model, i.e., h → ∞ in Eq. (2). Results for
q ¼ 4, 5 are discussed in Supplemental Material (SM) [19],
where we also determine TcðhÞ for q ¼ 4, 5, 6. The RG
process is manifested in the flows with increasing L of the

two observables at fixed T. The high-T Gaussian fixed
point (G) is at ðU;ϕqÞ ¼ ð0; 0Þ, the XY critical point at
ðUXY; 0Þ, the U(1) symmetry-breaking Nambu-Goldstone
(NG) point at (1,0), and the Zq symmetry-breaking point at
(1,1). For T ≥ Tc, we observe simple flows to the fixed
points, while for T < Tc there are two stages in the flow
away from the XY point: first toward the NG point and then
a NG to Zq crossover. While this multistage flow is
expected based on previous RG results [8,11,12], our
description with a phenomenological scaling function for
accessible observables provides a more practical and
intuitive framework for numerical simulations.
Scaling dimensions.—We first study the scaling dimen-

sion yq of the Zq field, following the red curve that tends to
the XY fixed point in Fig. 1. Previous MC estimates used Zq

anisotropy correlators in the pure XY model for q ¼ 4 [16].
Since the Zq field is irrelevant for q ≥ 4, the decay power
2Δq of the correlation function is larger than 6, which makes
it difficult to determineΔq accurately (see SM [19] for some
results). The decay of the induced ϕq is analyzed in Fig. 2 for
q ¼ 4, 5, 6 at selected h values. The results listed in Table I
demonstrate that ϕq scales as M ¼ Ldm in the general
discussion above, i.e., ϕq ∝ L−Δqþd ¼ L−jyqj.
For q ¼ 4, the Zq field may only be irrelevant for small

h; the hard model (h ¼ ∞) is equivalent to two decoupled
Ising models, and for h ¼ 2 the transition already seems to
not be in the XY universality class [13]. Here we use h ¼ 1.
Our simulations extend up to L ¼ 120 for q ¼ 4 but
smaller for larger q because of the long runs needed to
obtain sufficiently small error bars on ϕq. To reduce effects
of scaling corrections we have excluded small systems until
a good fit is obtained. Our result y4 ¼ −0.114ð2Þ agrees
well with the best previous numerical result [16], but the
error bar is smaller. It also matches a high-order non-
perturbative expansion [12]. For q ¼ 5, we have used joint

FIG. 1. MC RG flows for q ¼ 6. Each set of connected dots
represents a fixed T and sizes L ¼ 2; 3; 4;…. The sets for the
highest and lowest T and T ¼ Tc are shown with bigger dots in
black, red, and blue, respectively. The inset shows detailed flows
in the critical region.
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FIG. 2. Log-log plot of the critical angular order parameter ϕq
versus the linear system size L for several q and h values. The
fitting lines correspond to the power-law form ϕq ∝ L−jyqj and the
resulting exponents are summarized in Table I.
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fit to data for several h values, with a common exponent but
different prefactors. Our result y5 ¼ −1.27ð1Þ is close to an
extrapolated value from simulations for smaller q [11] but
differs significantly from the field-theory expansions
[8,12]. For q ¼ 6, we obtain y6 ¼ −2.55ð6Þ, which again
agrees well with the extrapolated value [11] but differs from
those in Refs. [8,12]. For all the q values studied, our results
show that the first-order ϵ expansion [8] overestimates y6,
while the nonperturbative expansion [12] underestimates it
for q > 4. All results agree well with a very recent MC
calculation of an optimized correlation function [20].
Having determined the scaling dimensions, the Zq order

parameter in the ordered phase takes the form

ϕq ¼ LyqΦðtL1=ν; tL1=ν0qÞ; ð4Þ
where we neglect the irrelevant arguments in Eq. (1) as they
merely produce corrections here. We apply this form to
curves such as those shown in Fig. 1, primarily by defining
distances to the various fixed points. We study q ¼ 6
specifically but keep the general-q notation.
Scaling near the XY point.—Though the critical point is

well known, it is still useful to study the flows in the two-
dimensional space in Fig. 1. We analyze the minimum
distances of the T < Tc curves to ðUXY; 0Þ. Here, tL1=ν0q ≪
tL1=ν ≪ 1 in Eq. (4), and to leading order

ϕq ∝ Lyqð1þ tL1=νÞ; ð5Þ

where we do not include unimportant factors for simplicity.
The Binder cumulant scales as

U ¼ UðtL1=νÞ ¼ UXY þ tL1=ν þ L−ω; ð6Þ

where ω is the smallest correction exponent affecting U.
The scaling form (i.e., without unimportant factors) of the
distance d1 to the XY fixed point is

d1 ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðtL1=ν þ L−ωÞ2 þ L2yqð1þ tL1=νÞ2

q
: ð7Þ

Since ω ≪ jy6j, the first term in the square root dominates;
d1 ∝ tL1=ν þ L−ω, i.e., d1 → U −UXY here (but not

necessarily in general). Minimizing for fixed t gives the
distance D1 and the corresponding system size L1,

D1 ∝ tω=ð1=νþωÞ ¼ t0.345ð6Þ;

L1 ∝ t−1=ð1=νþωÞ ¼ t−0.440ð4Þ; ð8Þ

where we have used ν ¼ 0.6717ð1Þ and ω ¼ 0.785ð20Þ
[18]. Figure 3(a) shows d1 versus L and Fig. 3(b) shows
power-law fits to D1ðtÞ and L1ðtÞ, where the exponents are
0.372(1) and −0.404ð4Þ, respectively. These values are in
reasonable agreement with Eq. (8) considering scaling
corrections for the rather small sizes [19] and the neglected
subleading ϕ6 contribution in Eq. (7). The error bars reflect
only statistical fluctuations.
Another characteristic of the T < Tc curves in Fig. 1 is

the minimum distance to the horizontal axis. This RG stage
between the XY and NG fixed points is still governed by
the XY criticality because tL1=ν and tL1=ν0q are both small.
Since tL1=ν0q ≪ tL1=ν, ϕq is given by Eq. (5) and the
minimum value D2 and corresponding system size there-
fore scale with t as (for q ¼ 6)

D2 ∝ t−y6ν ¼ t1.71ð4Þ; L2 ∝ t−ν ¼ t−0.6717ð1Þ: ð9Þ

The expected exponents indicated above agree reasonably
well with our fits in Fig. 4, where the exponents are 1.88(2)
and −0.60ð3Þ, respectively. The deviations are again likely
due to scaling corrections.
Crossover exponent ν0q.—When tL1=ν ≫ 1 but tL1=ν0q is

arbitrary, Eq. (4) must reduce to

ϕq ¼ LyqðtL1=νÞagðtL1=ν0qÞ; ð10Þ

where the exponent a follows from the physics of the clock
model. Specifically, we can ask how ϕq depends on L at
fixed t when the U(1) symmetry is barely broken down to
Zq, i.e., when ϕq ≪ 1. This is a subtle issue at the heart
of the long-standing controversy regarding the symmetry

TABLE I. Scaling dimensions yq of the Zq field for q ¼ 4, 5, 6.
The numbers in parentheses indicate the statistical errors (1
standard deviation) of the preceding digit.

q

−yq 4 5 6

Ref. [8] 0.2 1.5 3.0
Ref. [12] 0.114 1.16 2.29
Refs. [11,16] 0.108(6) 1.25 2.5
Ref. [20] 0.128(6) 1.265(6) 2.509(7)
This work 0.114(2) 1.27(1) 2.55(6)
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FIG. 3. (a) Distance d1ðLÞ to the XY fixed point. Black and
blue solid circles correspond to T ¼ 2.193 and T ¼ 2.201,
respectively, and open circles show temperatures in between.
The minimums (red circles) were obtained by polynomial fits.
(b) Power-law behaviors in t of the minimum distance D1 and
corresponding size L1 [red dots in (a)].
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crossover [8,10–12,21]. Instead of invoking physical argu-
ments, we will here simply posit that ϕq ∝ Lp in the regime
where tL1=ν is large but tL1=ν0q remains small [hence, g ≈ 1
in Eq. (10)], and later show how p can be consistently
determined from the MC RG flows. Thus, we have a ¼
νðp − yqÞ in Eq. (10):

ϕq ¼ Lptνðp−yqÞgðtL1=ν0qÞ: ð11Þ

This form should apply also when ϕq → 1, demanding g →
ðtL1=ν0qÞb with b ¼ −νðp − yqÞ and ν0q ¼ −b=p. Then,

ν0q ¼ νð1 − yq=pÞ ¼ νð1þ jyqj=pÞ; ð12Þ

which for p ¼ 3 agrees with Ref. [10], while for p ¼ 2 it
agrees with Refs. [11,12]. When ϕq deviates from 1,
g → ðtL1=ν0qÞb½1 − kðtL1=ν0qÞ�, so that for large tL1=ν0q ,

ϕq → 1 − kðtL1=ν0qÞ; ð13Þ

where the function k must be dimensionless.
The exponent ν0q in Eq. (13) can be determined by a

standard data-collapse procedure [10,11]. Here we proceed
in a different way: The function kðxÞ can be Taylor
expanded around some arbitrary point x0 where ϕq ¼ y0;
ϕq ¼ y0 þ aðx − x0Þ, or ϕq ¼ axþ b for some b. For fixed
t, we consider L ¼ Lc for which ϕqðLcÞ ¼ e for some e,
which gives Lc ∝ t−ν

0
q . In Fig. 5(a) we extract Lc for

e ¼ 0.5, 0.55, and 0.6. Analyzing the scaling behavior
with t in Fig. 5(b), we find ν06 ¼ 1.52ð4Þ. Thus, Eq. (12)
with jy6j ¼ 2.55ð6Þ is satisfied if p ¼ 2, in agreement with
Refs. [11,12]. From Eq. (11), the initial growth of ϕq with L
is then ϕq ∝ L2, not ∝ L3 [10].
Near the NG fixed point.—Finally, we consider the

distance to the NG fixed point (1,0), where Eq. (11) applies
with g ≈ 1 (L ≪ ξ0q can be tested self-consistently [19]).
U is close to 1, but should remain of the form UðtL1=νÞ
because, as we will see, L and t for a given curve in the

region of interest are related such that t → 0 when L → ∞.
We need 1 −U, which has a nontrivial scaling form,

1 − U ∝ ðtL1=νÞ−r; ð14Þ

where it has been argued that, in some cases, r ¼ dν ¼ 3ν
[22]. However, this result is based on subtle assumptions
and may not be generic [23]. As shown in SM [19], r ¼
1.52ð2Þ ≠ 3ν for the XY model.
The distance to the NG fixed point is, from Eqs. (14)

and (11) with νð2 − yqÞ ¼ 2ν0q and g ≈ 1,

d3 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L−2r=νt−2r þ L4t4ν

0
q

p
; ð15Þ

and minimizing with respect to L leads to

D3 ∝
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
t2rðR−1Þ þ t4ðν0q−RνÞ

p
; L3 ∝ t−νR; ð16Þ

where R ¼ ðrþ 2ν0qÞ=ðrþ 2νÞ. For the q ¼ 6 case we then
have D3 ∝ t0.9ð1Þ and L3 ∝ t−1.07ð3Þ. From the analysis in
Fig. 6 the exponents are 1.19(3) and −1.14ð2Þ, respectively,
in reasonable agreement with the prediction, again con-
sidering that we have not included any scaling corrections.
The crossover behavior around the NG point is also the
most intricate of all the regions in the way the two length
scales intermingle.
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Discussion.—The standard finite-size scaling hypothesis
in the presence of a DIP (see, e.g., Ref. [24]) includes only
tL1=ν and the irrelevant field hLy in Eq. (1), which is
sufficient for extracting the critical exponents close to Tc,
up to jT − Tcj ∝ L−1=ν. As we have shown here with the
clock model, the other relevant variable tL1=ν0q is necessary
for describing the symmetry crossover from U(1) to Zq. By
considering different necessary (for scaling) limiting forms
when the arguments are small or large, we have quantita-
tively explained the entire MC RG flows.
The controversial relationship between ν0q and the scal-

ing dimension yq [8,10–12,21] involves an exponent p
associated with the initial formation of an effective Zq

symmetric potential for the order parameter. Analytical RG
methods for related problems, e.g., the sine-Gordon model
with a weak potential, are indeed highly nontrivial and
sensitive to the type of approximation used [25]. In our
approach, p for a given system is obtained from numerical
data and can then be used to further understanding of the
subtle physics of the DIP. We have here confirmed numeri-
cally that p ¼ 2 in the clock model [11,12], but this
exponent is not necessarily universal—it may depend on
a combination of the finite-size properties of the fixed point
with the higher symmetry (here the well-understood NG
point [26,27]) and the mechanisms of the DIP causing the
lowering of the symmetry.
Our method should be useful in the context of decon-

fined quantum criticality [28–30], where a scaling ansatz
with two relevant arguments was introduced to account for
anomalous scaling in 2D quantum magnets [9]. There the
DIP cannot be tuned away (unlike some fermionic models
[31]), because it is connected to the lattice itself. Thus, the
method introduced here of studying scaling and RG flows
in the presence of a finite DIP is ideal.

We would like to thank Ribhu Kaul, Chengxiang Ding,
Jun Takahashi, and Xintian Wu for valuable discussions.
H. S. was supported by the Fundamental Research Funds
for the Central Universities under Grant No. 310421119
and by the NSFC under Grant No. 11734002. W. G. was
supported by NSFC under Grants No. 11734002 and
No. 11775021. A.W. S. was supported by the NSF under
Grant No. DMR-1710170 and by a Simons Investigator
Award, and he also gratefully acknowledges support from
Beijing Normal University under YingZhi Project
No. C2018046. This research was supported by the
Super Computing Center of Beijing Normal University
and by Boston University’s Research Computing Services.

*huishao@bnu.edu.cn
†waguo@bnu.edu.cn
‡sandvik@bu.edu

[1] K. G. Wilson, Renormalization group and critical phenom-
ena. I. Renormalization group and the Kadanoff scaling
picture, Phys. Rev. B 4, 3174 (1971).

[2] K. G. Wilson, Renormalization group and critical phenom-
ena. II. Phase-space cell analysis of critical behavior, Phys.
Rev. B 4, 3184 (1971).

[3] M. E. Fisher and M. B. Barber, Scaling Theory for Finite-
Size Effects in the Critical Region, Phys. Rev. Lett. 28, 1516
(1972).

[4] K. Binder, Critical Properties from Monte Carlo Coarse
Graining and Renormalization, Phys. Rev. Lett. 47, 693
(1981).

[5] J. M. Luck, Corrections to finite-size-scaling laws and
convergence of transfer-matrix methods, Phys. Rev. B 31,
3069 (1985).

[6] U. Wolff, Precision check on the triviality of the ϕ4 theory
by a new simulation method, Phys. Rev. D 79, 105002
(2009).

[7] D. J. Amit and L. Peliti, On dangerously irrelevant oper-
ators, Ann. Phys. (N.Y.) 140, 207 (1982).

[8] M. Oshikawa, Ordered phase and scaling in Zn models and
the three-state antiferromagnetic Potts model in three
dimensions, Phys. Rev. B 61, 3430 (2000).

[9] H. Shao, W. Guo, and A.W. Sandvik, Quantum criticality
with two length scales, Science 352, 213 (2016).

[10] J. Lou, A. W. Sandvik, and L. Balents, Emergence of U(1)
Symmetry in the 3D XY Model with Zq Anisotropy, Phys.
Rev. Lett. 99, 207203 (2007).

[11] T. Okubo, K. Oshikawa, H. Watanabe, and N. Kawashima,
Scaling relation for dangerously irrelevant symmetry-
breaking fields, Phys. Rev. B 91, 174417 (2015).
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