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1Institut d’Astrophysique de Paris, UMR 7095-CNRS, Université Pierre et Marie Curie, 98bis boulevard Arago, 75014 Paris, France

2Laboratoire Astroparticule et Cosmologie, Université Denis Diderot Paris 7, 75013 Paris, France
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The continuous spontaneous localization model solves the measurement problem of standard quantum
mechanics by coupling the mass density of a quantum system to a white-noise field. Since the mass density
is not uniquely defined in general relativity, this model is ambiguous when applied to cosmology. We
however show that most natural choices of the density contrast already make current measurements of the
cosmic microwave background incompatible with other laboratory experiments.
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Addressing the measurement (or macro-objectification)
problem is a central issue in quantum mechanics, and three
classes of solutions have been put forward [1]. One can
either (1) leave quantum theory unmodified and consider
different interpretations (e.g., Copenhagen, many worlds,
Qbism, etc.), (2) extend the mathematical framework and
introduce additional degrees of freedom (e.g., de Broglie-
Bohm), or (3) consider that quantum theory is an approxi-
mation of a more general framework and that, outside its
domain of validity, it differs from the standard formulation.
Dynamical collapse models [1–5] follow this last reasoning
and introduce a nonlinear and stochastic modification to the
Schrödinger equation. Remarkably, the structure of this
modification is essentially unique. Through an embedded
amplification mechanism, this allows microscopic systems
to be described by the standard rules of quantummechanics
while preventing macroscopic systems from being in a
superposition of macroscopically distinct configurations. It
also allows the Born rule to be derived rather than
postulated [5]. Because they lead to predictions that are
different from that of conventional quantum mechanics,
dynamical collapse models are falsifiable contrary to the
other options mentioned before (except de Broglie-Bohm
theory in the out-of-equilibrium regime [6,7]).
Different versions of dynamical collapse theories corre-

spond to different choices for the collapse operator (energy,
momentum, spin, position), the nature of the stochastic
noise (white or nonwhite), and whether dissipative effects
are included or not. Only a collapse operator related to
position can ensure proper localization in space, and three
iconic theories have been proposed: (1) the Ghirardi-
Rimini-Weber (GRW) model, which is historically the first
one but is not formulated in terms of a continuous
stochastic differential equation, (2) quantum mechanics
with universal position localization, where the collapse
operator is position but where the stochastic noise depends
on time only, and (3) the continuous spontaneous

localization (CSL) model [4], where the stochastic noise
depends on time and space and where the collapse operator
is the mass density. This version is the most refined of all
three and features the modified Schrödinger equation

djΨi¼
�
−iĤdtþ

ffiffiffi
γ

p
m0

Z
dxp½ρ̂smðxpÞ− hρ̂smðxpÞi�dWtðxpÞ

−
γ

2m2
0

Z
dxp½ρ̂smðxpÞ− hρ̂smðxpÞi�2dt

�
jΨi; ð1Þ

where Ĥ is the standard Hamiltonian of the system,
hÂi≡ hΨjÂjΨi, γ is the first free parameter of the theory,
m0 is a reference mass (usually the mass of a nucleon),
WtðxpÞ is an ensemble of independent Wiener processes
(one for each point in space), and ρ̂sm is the smeared mass
density operator,

ρ̂smðxpÞ ¼
1

ð2πÞ3=2rc3
Z

dypρ̂ðxp þ ypÞe−jypj2=2r2c ; ð2Þ

where rc is the second free parameter of the theory. The two
parameters γ and rc have been constrained in various
laboratory experiments. The strongest bounds so far come
from x-ray spontaneous emission [8], force noise measure-
ments on ultracold cantilevers [9], and gravitational-wave
interferometers [10]. These constraints leave the region
of parameter space around rc ∼ 10−8–10−4 m and λ ∼
10−18–10−10 s−1 viable, where λ≡ γ=ð8π3=2r3cÞ, corre-
sponding to the white region in Fig. 3.
Dynamical collapse models can also be constrained in a

cosmological context [11–18]. Indeed, the typical physical
scales involved in cosmology are many orders of magni-
tude different from those encountered in the laboratory and
this may lead to competitive constraints (in the early
Universe, energy scales can be as high as ∼1015 GeV,
corresponding to densities of ∼1080 g × cm−3). Moreover,
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one can argue that the quantum measurement problem (as
well as the quantum-to-classical transition issue [19–22]) is
even more acute in cosmology than in the laboratory [23]
due to the difficulties in introducing an “observer” as in the
standard Copenhagen interpretation [24,25].
Although the quantum state of cosmological perturba-

tions, jΨ2sqi, is a two-mode squeezed state that features
some classical properties [20,26,27], it is not an eigenstate
of the cosmic microwave background (CMB) temperature
anisotropies, so how the process

ð3Þ

occurred is unclear. This makes the early Universe a perfect
arena to test CSL.
The leading paradigm to describe this epoch is cosmic

inflation [28–32], which was introduced in order to solve
the puzzles of the standard hot Big-Bang phase. Inflation is
believed to have been driven by a scalar field ϕ, named the
“inflaton,” the physical nature of which is still unknown,
although detailed constraints on the shape of its potential
now exist [33–41]. Inflation also provides a convincing
mechanism for structure formation according to which
galaxies and CMB anisotropies are nothing but quantum
vacuum fluctuations amplified by gravitational instability
and stretched to astrophysical scales [42]. This mechanism
fits very well the high-accuracy astrophysical data now at
our disposal, in particular the CMB temperature and
polarization anisotropies [43,44].
The Universe is well described by a flat, homogeneous,

and isotropic metric of the Friedmann-Lemaître-Robertson-
Walker (FLRW) type, ds2 ¼ −dt2 þ a2ðtÞδijdxidxj, where
xi is the comoving spatial coordinate, t refers to cosmic
time, and aðtÞ is the scale factor which depends on time
only. During inflation, the expansion is accelerated, ä > 0,
and the Hubble parameter H ¼ _a=a (where a dot denotes
derivation with respect to time) is almost constant;
see Fig. 1.
To describe the small quantum fluctuations living on top

of this FLRW background, the metric and inflaton fields are
expanded according to gμν ¼ gFLRWμν ðtÞ þ δĝμνðt; xÞ and
ϕ ¼ ϕFLRWðtÞ þ δϕ̂ðt; xÞ with jδgμν=gFLRWμν j ≪ 1 and
jδϕ=ϕFLRWj ≪ 1. This gives rise to two types of perturba-
tions, scalars and tensors. Tensors correspond to primordial
gravitational waves and have not yet been detected, the
tensor-to-scalar ratio r being r≲ 0.064 [44]. Then, scalar
perturbations can be described with a single gauge-invari-
ant degree of freedom, the so-called curvature perturbation
ζ̂ðt; xÞ [42,45], which can be directly related to temperature
anisotropies. Expanding the action of the system (namely
the Einstein-Hilbert action plus the action of a scalar field)
up to second order in the perturbations leads to the
Hamiltonian of the perturbations, Ĥ ¼ R

R3þ d3k½p̂2
kþ

ω2ðk; ηÞv̂2k�, where v̂k ≡ zζ̂k is the Mukhanov-Sasaki

variable. One has introduced z≡ a
ffiffiffiffiffiffiffi
2ϵ1

p
MPl=cS where

cS is the speed of sound (cS ¼ 1 for a scalar field) and
ϵ1 ≡ − _H=H2 is the first Hubble-flow parameter [46,47]. In
the above expressions, the curvature perturbation has been
Fourier transformed, ζ̂ðη; xÞ ¼ ð2πÞ−3=2 R d3kζ̂kðηÞeik·x, as
appropriate for a linear theory where the modes evolve
independently [48]. The conjugate momentum is p̂k ≡ v̂k0,
where a prime denotes derivation with respect to the
conformal time η defined via dt ¼ adη. Each mode
behaves as a parametric oscillator, v̂k00 þ ω2ðk; ηÞv̂k ¼ 0,
with a time-dependent frequency ω2ðk; ηÞ ¼ c2Sk

2 − z00=z
that involves the background dynamics. This phenomenon,
described by the interaction between a quantum field (here
the cosmological perturbations) and a time-dependent
classical source (here the background spacetime), leads
to parametric amplification and can be found in many other
branches of Physics (e.g., the Schwinger effect [49], the
dynamical Casimir effect [50], Unruh [51], and Hawking
[52] effects, etc.).
Quantization of parametric oscillators yields squeezed

states, which are Gaussian states. Solving the Schrödinger
equation with the above Hamiltonian leads to
Ψ½v� ¼ Q

k;sΨs
kðvskÞ, where s ¼ R,I labels the real and

imaginary parts of vk, with Ψs
kðvskÞ ¼ Nke

−ΩkðvskÞ2 ,

FIG. 1. Time evolution of the physical distances at play in the
early Universe. During inflation, the Hubble radius H−1

(magenta line) is almost constant and, due to the expansion,
the wavelength λk of a Fourier mode (black line) for a given
quantum field crosses out that scale, above which spacetime
curvature sources parametric amplification. In the subsequent
Universe, H−1 increases faster than the scale factor a; hence, λk
crosses the Hubble radius back in. Depending on the value of
rc, λk may cross out rc either during inflation (rc) or during the
radiation era (r0c).
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jNkj ¼ ð2ℜeΩk=πÞ1=4, and Ωk obeying the equation
Ωk

0 ¼ −2iΩ2
k þ iω2ðk; ηÞ=2. In the standard approach,

hv̂ki ¼ 0 and one needs to assume the existence of a
specific process (3) that led to a particular realization
corresponding to our Universe (this is the macro-
objectification problem mentioned above). The dispersion
of the different realizations is characterized by the two-
point correlation function hζ2i ¼ R

Pζd ln k where Pζ ¼
k3jζkj2=ð2π2Þ is the power spectrum, which is predicted to
be of the form ASknS−1 where nS should be close to one.
The recent Planck data (identifying spatial and ensemble
averages) have confirmed this result with ln ð1010ASÞ ¼
3.044� 0.014 and nS ¼ 0.9649� 0.0042 [44].
If quantum theory is described by CSL rather than by the

standard framework, the behavior of the cosmological
perturbations is modified according to Eq. (1). In that
case, the mass density is given by ρ ¼ ρ̄þ δρ, where ρ̄ is
the homogeneous component of the energy density satisfy-
ing the Friedmann equation ρ̄ ¼ 3M2

PlH
2, MPl is the

reduced Planck mass, and δρ the density fluctuation.
In general relativity (GR), however, there is no unique

definition of the density contrast δρ=ρ̄. While all possible
choices coincide on sub-Hubble scales where observations
are performed, they can differ on super-Hubble scales. This
introduces a fundamental ambiguity when defining CSL in
cosmology: each choice for the density contrast leads to a
different CSL theory. In order to illustrate how the
calculation proceeds in details, we first consider the
physically well-motivated choice consisting in measuring
the energy density relative to the hypersurface which is as
close as possible to a “Newtonian” time slicing (denoted
δg in Ref. [53]). This leads to δρ=ρ̄ ¼ ϵ1ζ − ϵ1ð1þ
ϵ1a2H2∂−2Þζ0=ð3aHÞ if the Universe is dominated by a
scalar field. Our aim is certainly not to argue in favor of that
specific choice, and at the end of the Letter we generalize
our results to an arbitrary definition of the density contrast.
From the previous considerations, Eq. (1) can be written

in Fourier space as a set of independent CSL equations for
the real and imaginary parts of each Fourier mode, in which
the smeared mass density operator reads dδρssmðkÞ ¼ αkv̂sk þ
βkp̂s

k with

αk ≡M2
PlH

2ϵ1
z

e−k
2r2c=2a2

�
4þ ϵ2

2
− 3

�
aH
k

�
2

ϵ1ð1þ ϵ2Þ
�
;

ð4Þ

βk ≡M2
PlHϵ1
az

e−k
2r2c=2a2

�
3ϵ1

�
aH
k

�
2

− 1

�
; ð5Þ

where ϵ2 ≡ d ln ϵ1=d ln a denotes the second Hubble-flow
parameter. Because of the presence of the exponential term,
the effect of the CSL terms is triggered only once the mode
k under consideration crosses out the scale rc, i.e., when
its physical wavelength is larger than rc, k=a < r−1c .

Depending on the value of rc, this can happen either
during inflation or subsequently; see Fig. 1 (cases labeled
rc and r0c, respectively). Physically, it is clear that the CSL
terms cannot “localize” a mode if its “size” (its wavelength)
is smaller than the localization scale rc. This also means
that, at early time, when k=a < r−1c , the standard theory
applies, which implies that one of the great advantages of
inflation, namely the possibility to choose well-defined
initial conditions in the Minkowski limit (the so-called
Bunch-Davies vacuum state [54]), is preserved.
We are now in a position to solve Eq. (1). The most

general stochastic Gaussian wave function can be written as

Ψs
kðvskÞ ¼ jNkðηÞj expf−ℜeΩkðηÞ½vsk − v̄skðηÞ�2

þ iσskðηÞ þ iχskðηÞvsk − iℑmΩkðηÞðvskÞ2g; ð6Þ

where the free functions Ωk, v̄sk, σ
s
k, and χsk are (a priori)

stochastic quantities. This wave packet is centered around
hv̂ski ¼ v̄sk with a variance hðv̂sk − v̄skÞ2i ¼ ð4ℜeΩkÞ−1. The
collapse of the wave function happens if the width ofΨðvskÞ
is much smaller than the typical dispersion of its mean, i.e.,

R≡ E½hðv̂sk − v̄skÞ2i�
Eðv̄s2k Þ

≪ 1; ð7Þ

where E denotes the stochastic average. In fact, if the
collapse occurs according to the Born rule, then
Eðv̄s2k Þ ¼ hv̂s2k iγ¼0 ¼ ð4ℜeΩkjγ¼0Þ−1, and R can also be
defined as R ¼ E½hðv̂sk − v̄skÞ2i�=hv̂s2k iγ¼0.
When the wave function has collapsed, its realizations

are described by v̄sk. The power spectrum of the Mukhanov-
Sasaki variable (or of curvature perturbation) is thus given
by the dispersion of that quantity,

PvðkÞ ¼
k3

2π2
fEðv̄s2k Þ − ½Eðv̄skÞ�2g: ð8Þ

The above quantity can also be rewritten as PvðkÞ ¼
k3fEðhv̂s2k iÞ − E½hðv̂sk − v̄skÞ2i�g=ð2π2Þ.
In order to calculate the quantities (7) and (8), one can

insert the stochastic wave function (6) into Eq. (1) and solve
the obtained stochastic differential equations. One obtains
that Ωk decouples from the other free functions and obeys
Ω0

k¼4iγa4αkβkΩk=m2
0−2ðiþ2γa4β2k=m

2
0ÞΩ2

kþγa4α2k=m
2
0þ

iω2ðk;ηÞ=2. This equation is nonstochastic, as in the
standard case, but contains new terms proportional to γ.
Since it is nonstochastic, E½hðv̂sk − v̄skÞ2i� ¼ ð4ℜeΩkÞ−1 and
this implies that R ¼ ℜeΩkjγ¼0=ℜeΩk.
In order to obtain the spectrum (8), Eðhv̂s2k iÞ remains to

be determined. This is done by noticing that Eq. (1) can be
cast into a Lindblad equation [55] for the averaged density
matrix ρ̂ ¼ EðjΨihΨjÞ [5]. From this Lindblad equation,
one can derive a third-order differential equation for
Eðhv̂s2k iÞ that can be solved exactly [56]. Combining the
above mentioned results, one obtains
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PvðkÞ ≃
k3

2π2
1

4ℜeΩkjγ¼0

�
1þ 3

2

γ

m2
0

ϵ31ρ̄inf

�
k
aH

�
−1

end

−
ℜeΩkjγ¼0

ℜeΩk

�
; ð9Þ

where ρ̄inf ¼ 3H2
infM

2
Pl is the energy density during infla-

tion. Depending on the value of γ, different results can be
obtained, that are sketched in Fig. 2. If γ ¼ 0, the state
remains homogeneous and isotropic, and the spectrum
vanishes. Then, when γ increases above a certain threshold,
collapse occurs (R ≪ 1), so the third term in Eq. (9) can be
neglected. Provided the second term remains also negli-
gible, the Born rule is thus recovered, and a scale-invariant
power spectrum is obtained, in agreement with observa-
tions. Finally, when γ continues to increase so as to make
the second term large, the power spectrum is no longer
frozen on large scales and acquires a spectral index nS ¼ 0,
which is excluded by CMB observations.
The amplitude of the correction to the power spectrum is

proportional to the energy density during inflation mea-
sured in units of the reference mass, which is clearly huge
and illustrates the potential of cosmology to test the
quantum theory, given that its characteristic scales differ
by orders of magnitude from those in the laboratory. The
correction is also slow roll suppressed because of the
relation between δρ=ρ and ζ [since only the perturbations
are quantized, the classical part ρ̄ cancels out in Eq. (1)].
This suppression, however, is not sufficient to compensate
for the hugeness of ρ̄inf=m2

0.
In the standard situation, since the power spectrum of ζ is

frozen on large scales, its value at the end of inflation is
what we observe on the CMB last scattering surface and the
calculation can be stopped here. In the CSL theory
however, this may no longer be true; hence, one needs
to extend the present analysis to the radiation era that
follows inflation. During this epoch, the quantities αk and
βk read

αk ≡ 24M2
PlH

2

z
e−k

2r2c=2a2
�
3

�
aH
k

�
2

− 1

�
; ð10Þ

βk ≡ 12M2
PlH

az
e−k

2r2c=2a2
�
1 − 6

�
aH
k

�
2
�
: ð11Þ

The power spectrum of the Mukhanov-Sasaki variable can
then be determined using the same techniques as before,
and one obtains

PvðkÞ ¼
k3

2π2
1

4ℜeΩkjγ¼0

�
1þ 448

3

γ

m2
0

ρ̄endϵ1

�
k
aH

�
−1

end

−
ℜeΩkjγ¼0

ℜeΩk

�
; ð12Þ

where ρ̄end is the energy density at the end of
inflation. Comparing with Eq. (9), one can see that the
power spectrum indeed evolves during the transition
between inflation and the radiation era, but quickly
settles to a constant value, which is therefore the
power spectrum probed by CMB experiments. The
CSL terms introduce a correction with a spectral index
nS ¼ 0. One can also determine the collapse criterion
R ¼ 1152γρ̄endð−kηendÞ−7=m2

0.
So far, we have assumed that the scale rc was crossed out

during inflation. Let us now examine the situation where rc
is crossed out during the radiation era. In that case, prior to
crossing and in particular during the entire inflationary
phase, the standard results remain valid. After crossing, the
CSL terms become important and, using again the same
techniques, one obtains

PvðkÞ ¼
k3

2π2
1

4ℜeΩkjγ¼0

�
1þ 35408

429

γ

m2
0

ρ̄endϵ1

×

�
rc
lH

�
−9

end

�
k
aH

�
−10

end
−
ℜeΩkjγ¼0

ℜeΩk

�
: ð13Þ

As before, the spectrum is frozen out on super-Hubble
scales, but the CSL correction now has spectral index
nS ¼ −9. The collapse criterion is given by R ¼
7264γ=ð11m2

0Þρ̄endðkηendÞ−14ðHendrcÞ−7.
Since the CSL corrections are strongly scale dependent,

they are ruled out by CMBmeasurements. Therefore, using
that k=ðaHÞjend ¼ e−ΔN , where ΔN is the number of e-
folds spent by a mode between Hubble radius crossing
during inflation and the end of inflation (typically, for
scales of cosmological interest today, ΔN ∼ 50), one
concludes that γ ≪ m2

0ð448ρ̄endϵ1=3Þ−1e−ΔN if Hendrc <
eΔN and γ ≪ m2

0ð35408ρ̄endϵ1=429Þ−1ðHendrcÞ9e−10ΔN if
Hendrc > eΔN . Moreover, the requirements that collapse
has occurred when the CMB is emitted, which is equivalent
to R < 1, leads to γ>m2

0ð1152ρ̄endÞ−1ð−kηendÞ7 ifHendrc <
eΔN and γ > m2

0ð7264ρ̄end=11Þ−1ð−kηendÞ14ðHendrcÞ7 if
Hendrc > eΔN . These constraints are represented in Fig. 3.
These results allow us to conclude that if the CSL theory

is embedded in GR with the Newtonian density contrast,
then the parameter values that remain allowed by current
laboratory experiments are excluded by CMB measure-
ments. Therefore, that version of CSL is now ruled out.

BORN 

FIG. 2. Relevant values for γ. If γ < γmin, the wave function
does not collapse and the power spectrum vanishes. If γ > γmax,
the wave function collapses but the Born rule is violated and a
non–scale-invariant power spectrum is obtained, which is ex-
cluded by the CMB observations. The region where
γmin < γ < γmax, unbarred in Fig. 3, is where the wave function
collapses to a scale-invariant power spectrum.
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As stressed above, other choices for the density contrast
could be made. On large scales, they can be generically
related to the Newtonian density contrast δg by
δp ∝ δg½k=ðaHÞ�p, where p is a free index. Then, the term
∝ k−1 in Eq. (12) becomes ∝ k2p−1, while in Eq. (13), the
term ∝ k−10 becomes ∝ k4p−10 and the term ∝ ðrc=lHÞ−9
becomes ∝ ðrc=lHÞ2p−9. This implies that any choice
corresponding to p < 2 is ruled out. When derived from
a more fundamental theory, the CSL model should thus
come with a prescription for the density contrast, that
crucially conditions the cosmological constraints.
However, as explained in the Supplemental Material
[57], any “natural” choice for the density contrast leads
to p ¼ 0, with the one exception of the density contrast
denoted δm in Ref. [53], which corresponds to p ¼ 2. Our
result therefore demonstrates that astrophysical data are
already accurate enough to rule out CSL theories, except
for a small subset of choices for the density contrast.

Further subtleties could also arise if the CSL model was
formulated in a field-theoretic manner [4,58–60] (which is
in principle required in the present context—although at
linear order all Fourier modes decouple and can be treated
quantum mechanically), where parameter values may, e.g.,
run with the energy scale at which the experiment is
performed. Other approaches, e.g., Diósi-Penrose model
[3,61] where gravity is responsible for the collapse or
scenarios where dissipative effects are taken into account
[62], could also lead to different results. Other scenarios for
forming cosmological structures in the early Universe, such
as bouncing cosmologies, could also be investigated.
Despite these uncertainties, the fact that astrophysical

data can constrain CSL highlights the usefulness of early
Universe observations to discuss foundational issues in
quantum mechanics.
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