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We study a system of purely repulsive spherical self-propelled particles in the minimal setup inducing
motility-induced phase separation (MIPS). We show that, even if explicit alignment interactions are absent,
a growing order in the velocities of the clustered particles accompanies MIPS. Particles arrange into aligned
or vortexlike domains whose size increases as the persistence of the self-propulsion grows, an effect that is
quantified studying the spatial correlation function of the velocities. We explain the velocity alignment by
unveiling a hidden alignment interaction of the Vicsek-like form, induced by the interplay between steric
interactions and self-propulsion.
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Fishes [1], birds [2], or insects [3] often display fascinating
collective behaviors such as flocking [2,4] and swarming [5],
where all units of a group move coherently, producing
intriguing dynamical patterns. A different mode of organi-
zation of living organisms is clustering, for instance in
bacterial colonies [6], such as E. coli [7], Myxococcus
xanthus [8], or Thiovulummajus [9], relevant for histological
cultures in several areas of medical and pharmaceutical
sciences. Out of the biological realm, the occurrence of
stable clusters [10–13], stable chains [14], or vortices [15] in
activated colloidal particles, e.g., autophoretic colloids or
Janus disks [16,17], offers an interesting challenge for the
design of new materials.
Even if the microscopic details differ case by case, a few

classes of minimal models with common coarse-grained
features have been introduced in statistical physics. Units in
these models are called “active” or “self-propelled” par-
ticles [18–20] to differentiate them from Brownian colloids
which passively obey the forces of the surrounding envi-
ronment. Propelling forces may be either of mechanical
origin (flagella or body deformation), or thermodynamic
nature (diffusiophoresis and self-electrophoresis) [21,22].
In some simple and effective examples, self-propulsion is
modeled as a constant force with stochastic orientation, as
in the case of active Brownian particles (ABP) [23,24].
Thermal fluctuations play only a marginal role and sto-
chasticity is usually due to the unsteady nature of the
swimming force itself.
The recent theoretical activity has focused on two kinds of

ordering phenomena in active matter: (i) density phase-
separation and (ii) orientation (or velocity) alignment. We
review some essential points of the two phenomena, useful in
the Letter. Concerning case (i), the interplay between steric
interactions and self-propulsion is believed to be sufficient

for observing phase separation as density or activity
increases. This occurs even in the absence of attractive
forces, at variance with passive Brownian particles, and for
this reason the mechanism is known as motility-induced
phase separation (MIPS) [25,26]. Originally rationalized in
the framework of run and tumblemodels, it has been recently
recognized to appear also in ABP [27,28]. Regarding case
(ii), the appearance of any kind of order in the orientation or
velocity of active particles is deemed to be a consequence
of some breaking ofmicroscopic isotropy or the introduction
of explicit aligning interactions. For instance it may occur for
dumbbells, rods, and, in general, elongated microswimmers
even in the absence of explicit alignment interactions
[29–32]. Explicit interactions that favor the alignment of
neighbors’ velocities of course induce the emergence of
ordering in the velocity field also for spherical particles, such
as in the seminal Vicsek model [33,34], where a transition
to long-range order (“flocking”) has been put in evidence
[35–37], together with density inhomogeneities in the form
of traveling bands [38,39] or periodic density waves [40]. In
recent years, a new ordering mechanism has been recog-
nized, which has been termed implicit or self-alignment: the
orientation of the particle tends to align to its velocity, and
this (without additional explicit aligning particle-particle
interactions) produces orientation-velocity ordering [41,42].
Summarizing, the alignment characterizing Vicsek-like

models and the MIPS-like phase separation are phenomena
that are usually thought to be distinct. The effect of
velocity-velocity aligning interactions for the MIPS sce-
nario has been also considered, but a clear effect of their
interplay is still an open question [43–47].
In the present Letter, we challenge the widespread idea

that explicit alignment interactions are necessary to observe
a growing orientational order or—equivalently—that the
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velocity alignment observed in Vicsek-like models do not
appear in purely repulsive, spherical ABP particles. To the
best of our knowledge, previous studies aimed to measure
the polarization, i.e., the existence of a common orientation
of the self-propelling force, but they overlooked the
possibility of ordering in the real particles’ velocity, which
is the crucial observation of the present Letter.
We consider a system of N interacting self-propelled

particles, for simplicity (and without loss of generality) in
two dimensions. The evolution of the center of mass
coordinate of each of them, xi, is described by an over-
damped equation of motion with self-propulsion embodied
by a time-dependent external force with constant modulus,
v0, and orientation vector, ni, of components ðcos θi; sin θiÞ.
According to the ABP scheme, the orientational angles, θi,
evolve as independent Wiener processes. Interactions are
purely repulsive and no explicit aligning forces are included.
Therefore, the dynamics reads:

γ _xi ¼ Fi þ γv0ni; ð1aÞ

_θi ¼
ffiffiffiffiffiffiffiffi
2Dr

p
ξi; ð1bÞ

Dr being the rotational diffusivity (thermal diffusion is
usually negligible) while γ is the constant drag coefficient.
Steric interactions are modeled by the force Fi ¼ −∇iUtot,
being Utot ¼

P
i<j UðjrijjÞ with rij ¼ xi − xj. We choose

UðrÞ as a purely repulsive potential of the WCA type,
namely UðrÞ ¼ 4ϵ½ðσ=rÞ12 − ðσ=rÞ6� þ ϵ, for r ≤ 21=6σ
and zero otherwise. The constant σ represents the nominal
particle diameter while ϵ is the energy scale of the
interactions.
Numerical integration of Eq. (1a) is performed for a

systemofN particles in a square box of lengthL (which does
not exceed the persistence length v0=Dr except for
1=Dr ¼ 3, 5), with periodic boundary conditions. We
consider a packing fractionϕ ¼ 0.64, whereMIPS is known
to occur at small enough values ofDr [27]. Indeed, Fig. 1(a)
shows the coexistence of a stable dense cluster and a dilute
disordered phase, atDr ¼ 0.2. The boundary of the cluster is
highly dynamical: continuously in time, particles join or
leave the cluster, in such a way that its average population
remains stable. In Figs. 1(b)–1(d), we enlarge three repre-
sentative regions of the system. The bulk displays a highly
ordered close-packing configuration [28]. The pair corre-
lation function, gðrÞ, shown in the Supplemental Material
[48], reveals that within the cluster the main peak occurs at a
distance r̄ < σ: particles attain a steady-state configuration
with large potential energy, where each self-propelled
particle climbs on the repulsive potential exerted by the
surrounding ones. Besides, the occurrence of a second
double-split peak reveals a hexagonal lattice structure, in
agreement with the direct observation and previous studies
[28]. The colors in Figs. 1(a)–1(d) encode the orientation,n,

of the self-propelling force which appears to lack any
kind of alignment.
In Figs. 1(c) and 1(d) we give evidence of the main novel

phenomenon reported here. We draw with blue arrows the
velocities, _xi, of each active particle which in general is
different from the orientation of the active force, i.e.,
_xi ≠ niv0. Despite the absence of any alignment interac-
tion, the velocities of the self-propelled particles in the bulk
of the cluster align, self-organizing in large oriented
domains inside the cluster. Even if each ni points randomly,
particles in large groups move in the same direction
[Fig. 1(c)]. Such domains dynamically self-arrange con-
tinuously in time and, in some cases, evolve into vortex
structures as evidenced in Fig. 1(d). The average velocity of
each domain is quite smaller than v0 (the typical speed in
the absence of interactions). Further details about the
velocity distributions in the different phases are contained
in the Supplemental Material [48].
The global alignment of the particles or polarization is

commonly measured by considering the propulsion ori-
entation, ni, of each particle, while here we focus on the
velocity _xi. A possible order parameter is represented by
the sum jPN

k¼1 e
iψkðtÞj=N, where ψk is the angle formed by

the particle velocity with respect to the x axis. Such a
parameter has the property of being zero for particles
without any alignment while it returns one for perfectly
aligned particles. Unfortunately, even if restricted to par-
ticles inside a cluster, such a quantity does not reveal a clear
polarization of the system because of the presence of
several domains with different orientations. Thus, we
introduce the spatial correlation function of the velocity

(a) (b)

(c) (d)

FIG. 1. In panel (a) we plot a snapshot configuration, displaying
MIPS, enlarging a window near the surface of the cluster in panel
(b). Colors encode the self-propulsion direction. Panels (c) and (d)
are windows of the bulk where we plot the velocities of each
particle with blue arrows, showing aligned and vortex domains,
respectively. Data are obtained by simulation with v0 ¼ 50,
Dr ¼ 0.2 and the other parameters as described in the text.
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orientation, QiðrÞ. We define the angular distance between
two angles dij ¼ min½jψ i − ψ jj; 2π − jψ i − ψ jj�, and mea-
sure the velocity alignment between particle i and the
neighboring particles in the circular crown of mean radius
r ¼ kr̄, with integer k > 0, and thickness r̄, in such away that

QiðrÞ ¼ 1 − 2
X
j

dij
N kπ

; ð2Þ

where the sum runs only over the particles in the circular
shell selected by k and N k is the number of particles in it.
Then, we define QðrÞ ¼ P

i QiðrÞ=N, which reads 1 for
perfectly aligned particles in the kth shell, −1 for anti-
aligned particles, and 0 in the absence of any form of
alignment. QðrÞ quantifies partial alignment even in the
absence of global polarization. Panel (b) of Fig. 2 shows
QðrÞ for different values of Dr in a set of simulations with
v0 ¼ 50 (the remaining parameters are fixed as above). In
general, Q is a decreasing function of r. At large Dr where
MIPS does not occur, the alignment measured by QðrÞ is
absent or very weak, affecting no more than the first two
shells. In the MIPS configuration, the degree of alignment
increases and spans larger and larger distances, when Dr is
reduced. Three snapshots with color-encoded velocity

orientation are shown in Figs. 2(c)–2(e), showing the
growth of velocity-aligned domains in the cluster phase.
In Fig. 2(a) we investigate the nature of this ordering
phenomenon by measuring the following order parameter

R ¼
Z

QðrÞdr: ð3Þ

The integral is performed over the whole cluster domain
while in the absence of phase separation we consider the
whole box.
To evaluate the relationship between this growing spatial

velocity order andMIPS, we compare Rwith an established
order parameter for phase separation. Local packing frac-
tions show a unimodal distribution when the system is not
phase separated and a bimodal one when phase separation
occurs. The height of the peaks in the distribution identifies
the most probable values of the packing fraction in the
unimodal case, it corresponds to the homogeneous phase
ϕg ≈ ϕ. Instead, in the bimodal case, the cluster phase is
identified by the peak with ϕc > ϕ while the disordered
phase by that withϕg < ϕ. These results are reproduced as a
function of 1=Dr in Fig. 2(a). At 1=Dr ∼ 0.3 phase sepa-
ration is revealed by the transition from a single peak to a
double peak in the distribution of the packing fraction. In our
configuration, ϕg in the homogeneous phase follows con-
tinuously the values outside the cluster, which forms at a
much higher packing fraction. The comparison with the
curve for R reveals the most interesting information of our
study, which is the coincidence between theMIPS transition
and the growing of the velocity order. Indeed, R reveals a
two-steps behavior, being almost zero before 1=Dr ∼ 0.3
and revealing a sharp, monotonic increase starting from this
point. The reason for such an increase is twofold: a pure
nonequilibrium effect induced by the growing of 1=Dr
(relevant even at constant density) and the slow increase
of ϕc, shown in Fig. 2(a). Such a distinction is confirmed in
the Supplemental Material [48], where we study an active
system with periodic boundary conditions at a higher
density where no phase separation is present. Even in this
case, domains with velocity alignment are observed, whose
size increases with 1=Dr.
To shed light on the above phenomenology we perform

an exact mapping of the original ABP dynamics, Eq. (1), in
the same spirit of the Ornstein-Uhlenbeck (AOUP) model
[49–51]. In particular, we obtain an equation of motion for
the active particle velocity, vi ¼ _xi, which is an unprec-
edented result for ABP. In two dimensions, vi follows:

μ_vi ¼ −γ
XN
j¼1

ΓijðrijÞvj þ Fi þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γðμv20Þ

q
ξi × ni; ð4Þ

where ξi is the stochastic vector with components ð0; 0; ξiÞ
and both vi and xi belong to the plane xy. The effective
mass is μ ¼ γ=Dr and the viscosity matrix Γij has the
following structure:

(a)

(c) (d) (e)

(b)

FIG. 2. Panel (a): density, ϕg (red upper triangles) and ϕc (blue
lower triangles) for the dilute and the cluster phase, respectively, as
a function of 1=Dr. Velocity-alignment order parameter, R (green
diamonds), as a function of 1=Dr. For presentation reasons, R is
rescaled by a factor 6. Black dashed lines are eye-guides: the
vertical one identifies the value of 1=Dr at which the MIPS-
transition occurs. Instead, the horizontal lines refer to the nominal
density (∼0.64) and the value ofR in absence of velocity alignment
(∼0). Panel (b): QðrÞ for different values of Dr, as shown in the
legend, where we specify the presence or not of the phase
separation. Panels (c), (d), and (e): snapshot configurations for
three different values of 1=Dr. Panel (c) is obtained for Dr ¼ 3,
panel (d) for Dr ¼ 1, and panel (e) for Dr ¼ 0.2. Colors are
associated with the direction of the velocity of each particle. All the
simulations are realized with numerical density ∼0.64, v0 ¼ 50
and the other parameters specified in the text.
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Γαβ
ij ðrijÞ ¼ δijδαβ þ

1

Drγ
∇iα∇jβ

X
k<l

UðjrkljÞ; ð5Þ

where Latin and Greek indices refer to the particle
number and the spatial vector components, respectively.
The derivation of Eq. (4) is reported in the Supplemental
Material [48]. Equation (4) is the equation of motion of
an underdamped particle under the action of a space-
dependent Stokes force and a multiplicative noise both
in the velocity and in the position of the target particle. The
noise term always acts perpendicularly to ni. The most
interesting information contained in Eq. (4) is the fact that
the dynamics of the ith particle is strongly influenced not
only by the positions but also by the velocities of the
surrounding particles, through the matrix Γij which—
because of the factor 1=Dr—is dominated by the velocity
coupling terms. We recall that Eq. (4) is almost identical to
the equation of motion of interacting AOUP particles [52],
the only difference being the noise term, which in the
AOUP model is additive and uncorrelated; i.e., ξi × ni is
replaced by a noise vector with independent components.
Inside a cluster Eq. (4) can be further simplified, taking

advantage of the hexagonal spatial order: we may assume
that the ith particle in the bulk of the cluster has six
neighbors at relative positions r̄ij with j ¼ 1;…; 6, and
common distance r̄ ¼ jr̄ijj < σ, as revealed, for instance,
by the gðrÞ. With such an assumption, one gets for the
particle at the center of the hexagon

μ_v ¼ −
1

Dr

X6
j¼1

Ĥjðv − vjÞ − γv þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γðμv20Þ

q
ξ × n; ð6Þ

where Ĥj is the matrix coupling the central particle to the
jth particle and its elements depend on r̄ and on the angle
formed by xij ¼ xj − xi and the x axis, as reported in the
Supplemental Material [48]. Equation (6) can be rewritten
in terms of the average velocity vector of the six neighbors
v� ¼ P

6
j¼1 vj=6 and takes the form

μ_v ¼ −
Ĵ
Dr

ðv − v�Þ þ 1

Dr

X6
j¼1

Ĥjðvj − v�Þ − γv þ k; ð7Þ

with Ĵ ¼ P
6
j Ĥj ¼ 3fU00ðr̄Þ þ ½U0ðr̄Þ=jr̄j�gI , being I the

identity matrix and k the noise vector of Eq. (6).
Equations (6) and (7) are derived in the Supplemental
Material [48]. We notice that ðU00ðr̄Þ þ ½U0ðr̄Þ=jr̄j�Þ > 0
which means that the first term in the rhs of Eq. (7) is a
Vicsek-like force aligning the velocity of the central
particle towards the average velocity vector v� [38]. In
two special cases, the second force in the rhs of Eq. (7)
vanishes (i) trivially when the six neighbors have identical
velocities vj ¼ v�, and (ii) when the six neighbors have
velocities arranged according to a vortexlike pattern. This

statement is proved in the Supplemental Material [48]. In
both cases, at large 1=Dr the dynamics of μ_v is dominated
by the Vicsek-like aligning force [first term in the rhs of
Eq. (7)] and one has a rapid convergence v → v�. At the
end of such process—i.e., when the velocity of the central
particle is exactly aligned with the six neighbors—the
aligning force disappears and the subdominant bathlike
terms −γv þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2γðμv20Þ

p
ξ × n perturb the velocity. At this

stage, the Vicsek-like force comes back into play and
restores the alignment. For more general cases (i.e., when
the six neighbors are not aligned or are arranged in a vortex
pattern), a second force, depending on the deviations
vj − v� with a large prefactor 1=Dr, comes into play.
However, when particles are close to alignment, the terms
vj − v� are small and uncorrelated, so that their sum is even
smaller and does not alter significantly the aligning term,
as numerically checked. A rigorous general estimate of the
fate of Eq. (7) is difficult. We also note that our analytical
description in terms of velocity dynamics could be adapted
to describe the emergent polar order of rodlike [31,53,54]
or dumbbell [55,56] particles.
To derive the exponential-like form of the spatial veloc-

ities correlations, we assume all particles sitting on an
infinite hexagonal lattice, with each particle’s velocity
connected to its six neighbors by Eq. (6). Since n and v
are roughly uncorrelated in the bulk, we replace the
multiplicative noise with an additive uncorrelated noise,
as in theAOUP case [57]. The evolution of this velocity field
can be mapped, by Fourier transforming, onto a Langevin
equation for each mode in the reciprocal lattice. Its steady-
state solution gives the velocity structure factor or, equiv-
alently, the spatial correlations of the velocity field. This
analysis demonstrates that the correlation length of the
velocity field reads

λs ≈ r̄

�
3

4γDr

�
U00ðr̄Þ þU0ðr̄Þ

jr̄j
��

1=2
; ð8Þ

whose derivation is reported in the Supplemental Material
[48]. This argument suggests a correlation length growing
with 1=Dr in qualitative agreement with Figs. 2(a) and 2(b)
increasing also asϕc grows through r̄. We suspect that terms
at small wavelengths can be important, for instance, in the
explanation of the vortex structures.
Our study demonstrates an unprecedented strong con-

nection between velocity ordering and MIPS transitions. In
the absence of any microscopic force that explicitly aligns
velocities, we observe the emergence of velocity patterns,
aligned or vortex-like domains in a dense cluster, which
become more and more pronounced as the persistence of
the active force increases. We stress here the deep non-
equilibrium nature of the system. Such a velocity order
cannot be observed in any passive Brownian suspensions of
spherical particles, since, in those cases, particles’ veloc-
ities are distributed according to independent Boltzmann
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distributions. Thus, the growth of order in the velocity field
cannot be explained in equilibriumlike theories unless an
effective aligning force is introduced in a macroscopic
“Hamiltonian,” which is absent in the microscopic model,
in analogy with previous equilibriumlike approaches where
effective attractive interactions were introduced to explain
phase separation [58,59], which are also at the level of an
effective free-energy functional [60–63] or employing an
effective Cahn-Hilliard equation [64,65]. Such equilibrium-
like strategies were challenged by observations about
pressure [66,67], negative interfacial tension between the
coexisting phases [68,69], and different temperatures inside
and outside the cluster [70]. The phenomenology revealed
here represents, in our opinion, an additional argument in
favor of a purely nonequilibrium approach.
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