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The bilayer Hubbard model with electron-hole doping is an ideal platform to study excitonic orders
due to suppressed recombination via spatial separation of electrons and holes. However, suffering
from the sign problem, previous quantum Monte Carlo studies could not arrive at an unequivocal
conclusion regarding the presence of phases with clear signatures of excitonic condensation in bilayer
Hubbard models. Here, we develop a determinant quantum Monte Carlo algorithm for the bilayer
Hubbard model that is sign-problem-free for equal and opposite doping in the two layers and study
excitonic order and charge and spin density modulations as a function of chemical potential difference
between the two layers, on-site Coulomb repulsion, and interlayer interaction. In the intermediate
coupling regime and in proximity to the SU(4)-symmetric point, we find a biexcitonic condensate
phase at finite electron-hole doping, as well as a competing (π; π) charge density wave state. We
extract the Berezinskii-Kosterlitz-Thouless transition temperature from superfluid density and a finite-
size scaling analysis of the correlation functions and explain our results in terms of an effective
biexcitonic hard-core boson model.
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Introduction.—Soon after the prediction of Bose-
Einstein condensation in 1926, it was realized that the
concept of condensation can be generalized to arbitrary
systems of bosonic quasiparticles. One paradigmatic exam-
ple has been the BCS ground state of Cooper pairs in
superconductors [1,2]. Exciton condensation is a closely
related phenomenon, in which pairs of electrons and holes
condense to form a charge-neutral superfluid, and can be
understood in a similar manner by invoking an electron-
hole transformation. Experimental realizations of exciton
condensation have been achieved in quantum Hall bilayers
[3], semiconductor quantum wells [4], double bilayer
graphene [5], and in recent experiments demonstrating
compelling signatures for exciton condensation in TiSe2 [6]
and Ta2NiSe5 [7].
A major obstacle for studies of excitonic phenomena has

been their short lifetime. Specifically for excitonic ordering,
spatial separation of electrons and holes into two layers was
proposed to suppress electron-hole recombination [8].

Following this idea, excitonic order, including exciton
condensation and biexciton formation, has been extensively
studied in electron-hole bilayer continuous models, which
describe systems with electrons and holes confined in
quantum wells separated into two layers by a barrier
[9–14]. As well, studies of superconductivity in strongly
correlated materials recently have motivated exploration of
the electron-hole counterpart in two-band Hubbard-like
lattice models [15–24]. However, due to a severe fermion
sign problem, a previous determinant quantum Monte Carlo
(DQMC) study [16] of the spin-1=2 bilayer Hubbard model
could not arrive at an unequivocal conclusion regarding the
existence of exciton condensation. To address this issue,
here, we develop a sign-problem-free quantum Monte Carlo
algorithm for the bilayer Hubbard model at overall half
filling, with equal and opposite doping in each layer, and
investigate signatures of excitonic ordering.
Methods.—The bilayer Hubbard model studied in this

Letter has the form
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; ð1Þ

split between the kinetic Ĥ0 and interaction V̂ terms, where
ĉ†iασðĉiασÞ are creation (annihilation) operators for an
electron at site i in layer α∈fA;Bg with spin σ∈f↑;↓g
and the number operator n̂iασ ≡ ĉ†iασ ĉiασ. The parameters t
and μ denote the intralayer hopping amplitude between
nearest neighbors and the electron-hole chemical potential,
respectively, while U and V are the on-site and interlayer
Coulomb repulsion, respectively. To maintain overall
particle-hole symmetry, required by our sign-problem-free
algorithm, layer A and layer B have equal but opposite
filling. All parameters are illustrated schematically in
Fig. 1(a). Upon inclusion of an interlayer hopping term,
the bilayer Hubbard model described by Eq. (1) will be
exactly the same as the one studied in Ref. [16].
We characterize the bilayer Hubbard Hamiltonian in

Eq. (1) using a DQMC algorithm, a numerically exact
method to simulate interacting quantum many-body sys-
tems at finite temperature. Detailed introductions to the
DQMC algorithm can be found in Refs. [25–27].
In general, the Hubbard-Stratonovich (HS) field con-

figuration-dependent Boltzmann weight is

ws ¼ det ½Iþ Bs�; ð2Þ

where I is the identity matrix and Bs is a matrix dependent
on the configuration s. The determinant per HS field
configuration in Eq. (2) can be negative (or even complex)
for fermions in generic cases, which is known as the

fermion sign problem, giving rise to large statistical errors
and restricting simulations to relatively high temperatures.
Over the past few years, a number of algorithms were

proposed to “solve” this fermion sign problem for specific
models and parameter regimes [28–35]. One possible
strategy to prove that the probability weights are positive
semidefinite is to show that Iþ Bs has an antiunitary
symmetry T, i.e., T2 ¼ −I and T−1ðIþBsÞT ¼ IþBs
[28]. To achieve this, we first perform a single-layer
particle-hole transformation on the Hamiltonian Ĥ:
ĉiBσ → ð−1Þδi ĉ†iBσ, where δi is even or odd on a neighbor-
ing site. Then the interacting part of the Hamiltonian V̂ can
be decomposed by introducing two sets of spin-1 HS field
configurations fsg and fs̄g in spacetime, each taking
values f−1; 0; 1g. Consider now an unconventional anti-
unitary symmetry

T̂ ¼
X
iσ

½ji; A; σihi; B; σj − ji; B; σihi; A; σj�K̂; ð3Þ

where K̂ is the complex-conjugation operator. Matrix T is
related to operator T̂ by c†Tc ¼ T̂, where c ¼ ð…; ci;A;↑;
ci;A;↓; ci;B;↑; ci;B;↓;…Þ. One finds that IþBs is symmetric
under T when

jUj ≤ V; ð4Þ

which in turn determines the sign-problem-free parameter
regime of the algorithm. In real materials, such a regime
can arise, for instance, via electron-phonon coupling that
preferentially reduces the effective on-site electron-electron
repulsion [36].
Details for the sign-problem-free algorithm are given in

the Supplemental Material [37]. The strategy proposed here
works for all bipartite lattices, including square and
honeycomb lattices. Here, we focus on presenting results
for the square lattice with periodic boundary condition.
Results.—We start by presenting results at U ¼ V and

μ ¼ 0t, where the Hamiltonian is SU(4) symmetric [38,39].
Charge and spin modulations are described by the charge
correlation function Scðq⃗Þ and the spin correlation function
Ssðq⃗Þ defined in the usual way (see the Supplemental
Material [37] for definitions). Particle-hole symmetry
between the two layers ensures that we can restrict
measurements of the charge and spin correlation functions
to the electron-doped layer (layer A). Figure 1(b) shows the
spin correlation function Ssðq⃗Þ for U ¼ V ¼ 5t and μ ¼ 0,
measured with a system of linear size L ¼ 12 at inverse
temperature β ¼ 12=t. There is a clear enhancement of
Ssðq⃗Þ at q⃗ ¼ ðπ; πÞ, while the charge correlation function
Scðq⃗Þ shows no feature here (see the Supplemental Material
[37]), indicating SU(4) antiferromagnetism.
Exciton condensation may be obtained by breaking the

U(1) symmetry for the conserved charge
P

iσ n̂iAσ − n̂iBσ.
However, with the SU(4) symmetry, the invariance of Ĥ

FIG. 1. (a) Illustration of parameters in the bilayer Hubbard
Hamiltonian (1). (b) Density plot of the spin correlation function
Ssðq⃗Þ in the first Brillouin zone for U ¼ V ¼ 5t and μ ¼ 0t, a
SU(4)-symmetric point. The system size is L ¼ 12. The inverse
temperature is set at β ¼ 12=t.
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under transformation A↓ ↔ B↑ entails the equivalence
between excitonic and spin ordering, which is confirmed
numerically, as shown in the Supplemental Material [37]. It
is therefore natural to inquire about instabilities toward
excitonic condensation upon a weak breaking of the SU(4)
symmetry. In the following, we hence choose U ¼ 5t;
V ¼ 6t, which reduces SU(4) to SUð2Þ × SUð2Þ, repre-
senting two independent spin rotational symmetries for
layer A and layer B, to lift the degeneracy between
excitonic and spin ordering and systematically study the
phase diagram as a function of varying electron-hole
doping μ in the two layers.
Consider now the order parameter for a conventional

excitonic condensate in either singlet or triplet channels,
described generically by single-exciton creation operators
of the form b̂†q⃗¼

P
k⃗σσ0 ĉ

†
k⃗þq⃗Aσ

τσσ
0
ĉk⃗Bσ0 . Such a phase breaks

both the excitonic U(1) and residual SUð2Þ × SUð2Þ spin
rotation symmetry, precluding a finite-temperature phase
transition by the Mermin-Wagner theorem [40]. Instead,
intriguingly, we can define a biexciton creation (annihila-
tion) operator

Δ̂ðr⃗Þ ¼ ĉ†r⃗B↑ĉ
†
r⃗B↓ĉr⃗A↓ĉr⃗A↑; ð5Þ

which breaks the excitonic U(1) symmetry but preserves
SUð2Þ × SUð2Þ. It is therefore possible to obtain a
Berezinskii-Kosterlitz-Thouless (BKT) transition [41–43]
to a quasi-long-range biexciton condensate at finite temper-
ature. We therefore focus on studying the corresponding
correlation function

Peðq⃗Þ ¼
1

L2

X
R⃗;r⃗

e−iq⃗·R⃗hΔ̂†ðR⃗þ r⃗ÞΔ̂ðr⃗Þi: ð6Þ

Figure 2 summarizes results of various ordering tend-
encies for U ¼ 5t, V ¼ 6t, and electron-hole chemical
potentials ranging from μ ¼ 0t to μ ¼ 1.4t, obtained with
a system of linear size L ¼ 12 at inverse temperature
β ¼ 12=t. At half filling, the charge correlation function
Scðq⃗Þ shows a peak at q⃗ ¼ ðπ; πÞ, which implies charge
density wave (CDW) order. As μ increases and the two
layers become electron-hole doped, the (π; π) charge
correlation peak is suppressed, accompanied by a gradual
increase in biexciton correlations at q⃗ ¼ ð0; 0Þ, indicating
biexciton condensation (Bi-EC). The CDW and Bi-EC
appear to compete. Upon further increase of μ, the electron-
doped layer eventually becomes fully filled and the system
enters a band insulator (BI) phase. Spin orders are absent
throughout the electron-hole chemical potential range we
have studied. Figure 2(a) shows Scðπ; πÞ, Peð0; 0Þ, and hn̂i,
the average electron density per site in the electron-doped
layer, as functions of μ. For three typical μ values, 0t, 0.6t,
and 1.2t, density plots of Pe and Sc in momentum space are
presented in Figs. 2(b) and 2(c), respectively. At μ ¼ 0t, the
(π; π) CDW order gives rise to enhanced local biexcitonic
binding in real space, which results in a finite and uniform
distribution of Peðq⃗Þ in momentum space. At μ ¼ 0.6t, the
CDW order completely disappears and a biexciton corre-
lation peak emerges at q⃗ ¼ ð0; 0Þ. Finally, μ ¼ 1.2t falls in
the BI regime where hn̂i ¼ 2, with all ordering tendencies
absent.
To confirm the existence of biexciton condensation and

extract the BKT transition temperature Tc, we have exam-
ined the superfluid (SF) density ρs and performed a finite-
size scaling analysis on Pe. Before proceeding, we note that
Bi-EC and SF refer to the same state of matter here, with the
U(1) symmetry of the phase factor θ of Δ̂ broken. ρs is
defined by the classical action for phase fluctuations,

FIG. 2. Summary of results forU ¼ 5t, V ¼ 6t and electron-hole chemical potentials ranging from μ ¼ 0t to μ ¼ 1.4t, obtained with a
system of linear size L ¼ 12 at inverse temperature β ¼ 12=t. (a) Scðπ; πÞ (blue), Peð0; 0Þ (red), and hn̂i (green) plotted as functions of
μ, with error bars for each data point taken from Monte Carlo estimates. The error bars are of the size of the marker for most of the data
points. Gray dashed lines separating CDW, Bi-EC, and BI phases are guides to the eye. (b) Peðq⃗Þ in the first Brillouin zone at μ ¼ 0t
(left), μ ¼ 0.6t (middle), and μ ¼ 1.2t (right). (c) Scðq⃗Þ in the first Brillouin zone at μ ¼ 0t (left), μ ¼ 0.6t (middle), and μ ¼ 1.2t
(right). The black points in (b) and (c) identify actual data points from the calculation, whereas the colored surfaces are interpolated from
these data points.
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S ¼ β

2

Z
d2rρsð∇θÞ2; ð7Þ

and is related to unequal-time current-current correlation
functions by [44,45]

ρs ¼
1

16
ðδΛxx

AA þ δΛxx
BB − 2δΛxx

ABÞ; ð8Þ

δΛxx
αγ ¼ lim

qx→0
Λxx
αγðqx; qy ¼ 0;ωn ¼ 0Þ

− lim
qy→0

Λxx
αγðqx ¼ 0; qy;ωn ¼ 0Þ; ð9Þ

where

Λxx
αγðq⃗;ωnÞ ¼

X
r⃗

Z
β

0

dτe−iq⃗·r⃗eiωnτΛxx
αγðr⃗; τÞ; ð10Þ

Λxx
αγðr⃗; τÞ ¼

X
σ;σ0

hĵxα;σðr⃗; τÞĵxγ;σ0 ð0; 0Þi: ð11Þ

Here, ĵxασðr⃗; τÞ is the x component of the current operator for
imaginary time τ (see the Supplemental Material [37]).
Figure 3 compares ρs and Peð0; 0Þ as a function of μ and

temperature. For μ small (CDW) or large (BI), ρs is always
zero and independent of temperature. In contrast, in the
Bi-EC (SF) region, ρs becomes finite and increases upon
increasing the inverse temperature β, which signals a
transition of the system to a Bi-EC phase. The slight dips
of ρs before the onset of Bi-EC are finite-size artifacts.
Similar behaviors are found also in Peð0; 0Þ, as shown in
Fig. 3(b). The consistency between ρs and Peð0; 0Þ estab-
lishes the reliability of the SF density calculation and
further corroborates the existence of the Bi-EC phase.
Next, we proceed to a finite-size analysis and Tc extrapo-

lation, following the method used in a previous work, which
systematically determines the critical temperature of super-
conductivity in the 2D attractive Hubbard model [46]. In
numerical studies, a universal jump of the SF density is
considered as a signature of a BKT transition. Approaching
Tc from below, the following relation is satisfied [47]:

Tc ¼
π

2
ρs: ð12Þ

Figure 4(a) displays ρs measured for U ¼ 5t, V ¼ 6t, and
μ ¼ 0.5t, with linear system sizes up to L ¼ 16 at temper-
atures down to T ¼ t=24. A clear jump of the value of ρs
shows up for every system size upon decreasing temperature
and becomes more abrupt for larger system sizes. ρ ¼ 2T=π
is plotted with a black solid line in Fig. 4(a); the intercept of
ρ ¼ 2T=π and ρs gives an estimation for Tc ≈ 0.06t.
Another approach to extract Tc is by finite-size scaling

analysis of Peð0; 0Þ. For T ≤ Tc, the correlation strength
falls algebraically as hΔ̂†ðr⃗ÞΔ̂ð0Þi∼ jr⃗j−ηðTÞ, with ηðTcÞ¼
0.25 at the transition temperature [42,48]. For finite

systems with L ≫ 1 and T → Tc from above, Peð0; 0Þ
follows the relation [49]

Peð0; 0Þ ¼ L2−ηðTcÞfðL=ξÞ; ð13Þ

ξ ∼ exp

�
A

ðT − TcÞ1=2
�
: ð14Þ

Tc is determined by adjusting A and Tc until one reaches
optimal data collapse. For a faster convergence with
respect to system size, instead of Peð0; 0Þ we perform
the analysis on the local correlation subtracted value P0

e ¼
Peð0; 0Þ − ð1=L2ÞPr⃗hΔ̂†ðr⃗ÞΔ̂ðr⃗Þi, which should follow
the same relation as Peð0; 0Þ [Eq. (13)]. As presented in
Fig. 4(b), a good data collapse can be achieved with A ¼
0.35 and Tc ¼ 0.05t. The unscaled plot of L−7=4P0

e can be
found in the Supplemental Material [37]. We find that the
Tc estimated by two independent approaches are roughly
consistent with each other and serve as convincing evi-
dence for a BKT transition to a Bi-EC (SF) phase.
Discussion.—In the strong coupling regime, where

U;V ≫ t and V − U ≫ t, the low-energy physics of the
bilayer Hubbard Hamiltonian Ĥ can be captured by an
effective hard-core boson model

Ĥeff ¼ −tb
X
hiji

â†i âj þ Vb

X
hiji

n̂ai n̂
a
j − μb

X
i

n̂ai ð15Þ

(a)

(b)

FIG. 3. (a) ρs calculated for U ¼ 5t, V ¼ 6t and electron-hole
chemical potentials ranging from μ ¼ 0t to μ ¼ 1.4t for a system
of size L ¼ 12. (b) Peð0; 0Þ for the same parameters. The gray
dashed lines are guides to the eye, indicating the same chemical
potentials separating the phases as in Fig. 2(a).
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that constrains the local configuration of each site to
either two electrons in layer A or B, neglecting charge
fluctuations at finite V. In this basis, spanned by hard-core
boson operators âi ≡ Δ̂ðr⃗iÞ [Eq. (5)], virtual hopping of
fermions perturbatively generates nearest-neighbor boson
repulsion Vb ¼ ½8t2=ð2V −UÞ� þ f4t4=½ð2V −UÞ2�gf½4=
ðV −UÞ� þ ð1=VÞ − ½8=ð2V − UÞ�g and boson hopping
tb ¼ ½2t4=ð2V − UÞ2�f½4=ðV −UÞ� þ ð1=VÞg, respectively
[50]. Finally, the electron-hole doping μ enters equivalently
as a chemical potential for the hard-core bosons with
μb ¼ 4μ − 2Vb. Refer to the Supplemental Material [37]
for details.
Competition between the CDW and Bi-EC orders can

thus be understood in terms of the well-known competition
between checkerboard order and superfluid phase in the

hard-core boson model [51–53]. Importantly, this picture
indicates the stability of the Bi-EC in a wide parameter
range at zero temperature. However, we emphasize that
studying the high transition temperature regime at inter-
mediate coupling strength necessitates accounting for
significant charge fluctuations, beyond the boson mapping,
making a rigorous numerical analysis indispensable.
Finally, it also is noteworthy that, after performing a

particle-hole transformation on layer B, the electron-hole
bilayer Hubbard model maps onto an electron-doped
bilayer Hubbard model with attractive interlayer interaction
and repulsive on-site Coulomb interaction. In this scenario,
Bi-EC order corresponds to exotic charge-4e superconduc-
tivity (SC). While exciton condensation and charge-2e SC
have been scrutinized both theoretically and experimen-
tally, Bi-EC and charge-4e SC remain relatively underex-
plored, mainly due to the four-particle nature of their order
parameters, and are energetically less favorable than their
two-particle counterparts in most cases. Recent develop-
ments include identification of Bi-EC in a two-orbital
t − J chain [54] and exploration of charge-4e SC using
a Majorana quantum Monte Carlo method [55].
Conclusion.—In summary, we have developed a sign-

problem-free DQMC algorithm for the bilayer Hubbard
model in the parameter regime jUj ≤ V. With this tool, we
examined competition between spin, charge, and excitonic
orders on the square lattice. Remarkably, away from the
SU(4) point, we find convincing numerical evidence for a
biexcitonic condensate, which competes with (π; π) charge
order at finite electron-hole doping. We have extracted the
BKT transition temperature from the superfluid density,
as well as a finite-size and temperature scaling analysis of
biexciton correlation functions, with an estimate for
Tc ∼ 0.05t–0.06t. Finally, our algorithm applies to any
bipartite lattice, including the honeycomb lattice, and can
be straightforwardly extended to include magnetic fields
and interlayer hopping (see the Supplemental Material
[37]). Thus, this algorithm can be extended to study the
interplay of competing orders in a variety of systems, such
as bilayer graphene. We expect that such exact numerical
studies of electron-hole condensates will advance our
understanding of quasiparticle condensation in general
and ultimately may shed light on the strong correlation-
driven mechanism behind Cooper pair condensation in
unconventional superconductors.
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(a)

(b)

FIG. 4. (a) SF density ρs calculated for U ¼ 5t, V ¼ 6t, and
μ ¼ 0.5t with system sizes from L ¼ 10 to L ¼ 16. The black
solid line is ρ ¼ 2T=π. The intercept of the black solid line and
SF density data points determines the BKT transition temperature
Tc. (b) Plot of normalized correlation L−7=4P0

e versus L=ξ ¼
L exp½−A=ðT − TcÞ1=2� for A ¼ 0.35 and Tc ¼ 0.05 (units are
omitted). A good data collapse is especially achieved for L ≥ 12.
The unscaled plot of L−7=4P0

e as a function of β can be found in
the Supplemental Material [37].
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