
 

Blessing and Curse: How a Supercapacitor’s Large Capacitance Causes its Slow Charging
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The development of novel electrolytes and electrodes for supercapacitors is hindered by a gap of several
orders of magnitude between experimentally measured and theoretically predicted charging time scales.
Here, we propose an electrode model, containing many parallel stacked electrodes, that explains the slow
charging dynamics of supercapacitors. At low applied potentials, the charging behavior of this model is
described well by an equivalent circuit model. Conversely, at high potentials, charging dynamics slow
down and evolve on two relaxation time scales: a generalized RC time and a diffusion time, which,
interestingly, become similar for porous electrodes. The charging behavior of the stack-electrode model
presented here helps to understand the charging dynamics of porous electrodes and qualitatively agrees
with experimental time scales measured with porous electrodes.
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In the electric energy storage domain, supercapacitors
[Fig. 1(a)] have proven their value in applications requiring
higher power output than delivered by batteries and more
energy than stored in dielectric capacitors [1–4]. Many
types of carbon-based materials have been used for the
capacitor’s electrodes [5–7]. However, the relation between
the porous structures and the charging dynamics of macro-
scopic supercapacitors is poorly understood. On the one
hand, transmission line (TL) models [8–11] can success-
fully fit experimental data, but the fit parameters therein do
not have a direct interpretation in terms of microscopic
properties of supercapacitors. On the other hand, molecular
dynamics simulation [12–18], lattice Boltzmann simula-
tions [19,20], and classical dynamic density functional
theory [21–23] can elucidate the charging mechanisms of a
single or a few nanopores or a nanoscale anode-cathode
model, but predicted relaxation time scales are of the order
of ns, roughly 12 orders of magnitude smaller than
experimentally measured 103 s timescales of supercapaci-
tors [24–27]. These long charging times, however, can be
decently approximated by multiplying a nanocapacitor’s
RC time by the squared ratio of nanocapacitor-to-super-
capacitor thicknesses [14,18]. Even though such
approaches to bridge scales are valuable, they ignore the
actual multiscale character of the system, e.g., the transport
of ions through quasineutral macropores. To faithfully
describe the charging of supercapacitors, one should
account for both the ionic currents from the ion reservoir
that separates anode and cathode through a macropore
network into the nanopores (micrometers) and for the
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FIG. 1. (a) Sketch of a supercapacitor containing a 1∶1
electrolyte, two porous electrodes, and a battery providing an
electrostatic potential difference 2Ψ. (b) In our stack-electrode
model, the cathode and anode each contain n planar electrodes
at intervals of h. Initial anionic and cationic densities are ρb
throughout the cell. At time t ¼ 0, −Ψ and þΨ are applied to all
electrodes on the left and right-hand sides of the system,
respectively. (c) Equivalent circuit model for the stack-electrode
model.
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electric double layer (EDL) buildup therein (nanometers).
Clearly, such a multiscale analysis cannot be performed
with the above mentioned simulation techniques alone, as
computational power limits simulations to nanoscale sys-
tems. In this Letter, we present a minimal model to explain
the long experimental relaxation timescales of supercapa-
citors, instead.
The canonical model describing ionic charge relaxation

to an applied electric field employs a dilute 1∶1 electrolyte
and two parallel and planar blocking electrodes separated
by a distance 2L [28]. Suddenly applying a potential
difference 2Ψwith a battery, the two electrodes will acquire
opposite surface charge densities �eσðtÞ, eventually
screened in the electrolyte by two EDLs, whose equilib-
rium width is characterized by the Debye length
κ−1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
εkBT=2e2ρb

p
, with 2ρb the bulk ion number

density, ε the electrolyte permittivity, e the elementary
charge, and kBT the thermal energy. At late times and for
κL ≫ 1, σðtÞ ¼ 2Φρbκ

−1½1 − exp ð−t=τRCÞ�, with 2Φ ¼
2eΨ=kBT the dimensionless applied potential, τRC ¼
κ−1L=D the RC time, and D the ionic diffusion coefficient
[28–30]. Inserting typical experimental parameters
κ−1 ≈ 1 nm, L ≈ 250 μm, and D ≈ 1 × 10−9 m2 s−1 yields
τRC ≈ 10−4 s: larger than the timescales predicted by
molecular simulations, but still 5 orders of magnitude
smaller than the experimental charging time of super-
capacitors. This discrepancy comes as no surprise as the
above σðtÞ applies to planar electrodes: this model does not
account for the huge surface area and for the ion transport
through the porous structure of the supercapacitor electro-
des. Simple extensions of the flat electrode setup were
discussed, such as spherical and cylindrical electrodes
[20,31] and a single cylindrical pore in contact with a
reservoir [9]. Several theoretical works focused on the
charging dynamics of porous electrodes [32–38]. Still, the
gap between experimental and theoretical supercapacitor
charging timescales has not been bridged yet.
To explain why the charging time of macroscopic porous

electrodes [Fig. 1(a)] is much larger than that of flat
electrodes, in this Letter, we will characterize the charging
dynamics of the model shown in Fig. 1(b) and also compare
it to the charging dynamics of the circuit shown in Fig. 1(c).
In our model, the nanoporous cathode and anode of a
supercapacitor are both modeled by a stack of n parallel
electrodes with an equal spacing hmimicking the pore size,
such that the thickness of the cathode and anode equals
H ¼ ðn − 1Þh. The surface area A of all individual electro-
des is assumed to be sufficiently large that we can ignore
edge effects and study all microscopic observables as a
function of a single coordinate x perpendicular to the
electrode surfaces. We adopt a coordinate system whose
origin lies in the middle (x ¼ 0) of the system and where
the ith cathode and anode, with i ¼ f1;…; ng, are located
at Xi ¼ �½Lþ ði − 1Þh�. All parallel stacked electrodes are
fully permeable to the electrolyte in order to mimic the

porosity of supercapacitor electrodes, except the two outer
ones (i ¼ n) which are impermeable to have a closed
system [cf. Eq. (2b)]. Thus, the ionic number densities
ρ�ðx; tÞ and ionic fluxes j�ðx; tÞ are continuous at each Xi.
Initially, the ionic number densities are homogenous

ρ�ðx; t ¼ 0Þ ¼ ρb; jxj ≤ LþH: ð1Þ

At time t ¼ 0, a dimensionless potential difference 2Φ is
applied to the macroscopic cathode and anode. This yields
the following boundary conditions for t > 0:

ϕð�Xi; tÞ ¼ �Φ; ð2aÞ

j�ð�Xn; tÞ ¼ 0; ð2bÞ

with ϕðx; tÞ the electric potential in units of the thermal
voltage kBT=e. To model the ionic dynamics, we use the
classical Poisson-Nernst-Planck (PNP) equations [28]

∂2
xϕðx; tÞ ¼ −κ2

�
ρþðx; tÞ − ρ−ðx; tÞ

2ρb

�
; ð3aÞ

∂tρ�ðx; tÞ ¼ −∂xj�ðx; tÞ; ð3bÞ

j�ðx; tÞ ¼ −D½∂xρ�ðx; tÞ � ρ�ðx; tÞ∂xϕðx; tÞ�: ð3cÞ

In Eqs. (1)–(3) appear the applied potential Φ and four
length scales: h, H, L, and κ−1. With these parameters, we
can construct many different combinations that yield 1þ 3
independent dimensionless parameters, for instance:Φ, κL,
κH, and κh or, equivalently, Φ, κL, H=L, and n. Here, we
focus on the latter choice and mostly restrict to H=L ¼ 1,
which is reasonable for supercapacitors.
In Fig. 2(a), we present numerical results for ϕðx; tÞ for a

low potential Φ ¼ 0.001 and κL ¼ 100, H=L ¼ 1, and
n ¼ 5. These parameters correspond to κh ¼ 25, which
means that the EDLs are thin compared to the electrode
separations. Initially, the potential in the reservoir ðjxj < LÞ
displays a typical linear x dependence, which corresponds
to a spatially constant electric field. At later times, the
potential retains this linear dependence in the reservoir,
albeit with a slope that decreases with time due to the
buildup of EDLs. At short times t=τRC ≤ 20, there is a clear
asymmetry between the two EDLs that surround individual
planar electrodes. This asymmetry is lost at later times
t ≥ 20τRC, when the EDLs fully equilibrate.
For the same parameters, in Fig. 2(b), we show the

surface charge densities eσi of the individual electrodes
(labeled with i), which we find with Gauss’ law σiðtÞ ¼
−2ρbκ−2½∂xϕjXþ

i
− ∂xϕjX−

i
�. At early times t < τRC, the

electrodes charge faster the closer they are situated to
the reservoir, σ1 > σ2 > … > σn. However, the late-time
relaxation timescale is the same for all electrodes: all
electrodes reach 99.9% of their equilibrium charge around
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t=τRC ≈ 50. As the outer electrodes face the electrolyte
only at one side, we have ∂xϕjXþ

n
¼ ∂xϕj−X−

n
¼ 0, and

σnðt=τRC → ∞Þ is a factor two smaller than the surface
charge density of the other electrodes. To better understand
these phenomena, we studied the behavior of the circuit
model shown in Fig. 1(c). Note the great similarity of this
model to traditional TL models used for fitting experi-
mental data: the only difference is the capacitance C of the
outermost capacitor, rather than 2C in the TL model [39].
However, in contrast to the TL model, where R, C, and n
are fit parameters, the elements of the circuit in Fig. 1(c) are
all one-to-one related to electrolyte and electrode properties
of our microscopic model, R ¼ 2L=ðAεκ2DÞ and C ¼ Aεκ.
In the Supplemental Material [39], we derive a matrix
differential equation [cf. Eq. (S11)] that relates the potential
drops over the n capacitors to the currents through the n
resistors. With the solution to this equation, we find
predictions for the time-dependent charge on each capacitor
in this circuit, which translates into a prediction for σiðtÞ in
the corresponding microscopic model, shown in Fig. 2(b)
with symbols [39]. Clearly, the predictions from the
microscopic and circuit model are indistinguishable. In
line with our earlier observation, the equivalent-circuit
model predicts that all electrodes relax exponentially at
late times with the same time constant τn

τn
τRC

¼
�
2þ 0.75

H
L

�
n − 1 − 0.91

H
L
; ð4Þ

which correctly reduces to τ1 ¼ τRC for n ¼ 1 (for which
H=L ¼ 0), the coefficients 2 and 1 appearing in Eq. (4) are
analytical results obtained in the limit H=L → 0; the other
numerical factors relate to the smallest eigenvalue of an
almost-Toeplitz matrix in the afore-mentioned matrix
differential equation. From Eq. (4), we see that τn is large
whenever n is large. This suggests that the large relaxation
time of supercapacitors stems from their large internal
surface area, achieved through many small pores.
Interestingly, Eq. (4) recovers the electronic circuit intuition

that a supercapacitor should charge slower the larger its
electrode surface area. This areal scaling is not present in
the relaxation time τRC of Ref. [28] as, in that work, R and
C scale oppositely with A.
Because supercapacitors are typically subjected

to large potentials in practical applications, we also
characterize the dynamics of the stack-electrode model
at Φ > 1. In Figs. 3(a), 3(c), and 3(e) we present data for
Φ ¼ f0.01; 0.1; 1; 2g, κL ¼ 100, and n ¼ 1 (hence,
H=L ¼ 0). For this two-electrode setup, it is known that,
next to τRC, the diffusion time L2=D emerges in the ionic
relaxation due to slow salt diffusion from the cell center to
the electrode surfaces [28,30,43]. Indeed, Fig. 3(a) shows
that the normalized surface density σnðtÞ=σeq, with σeq ≡
σnðt=τRC → ∞Þ the late-time surface charge density, devel-
ops slower at higher Φ. Next, Fig. 3(c) shows the salt
concentration at the cell center cðtÞ ¼ ½ρþð0; tÞ þ
ρ−ð0; tÞ�=ð2ρbÞ for the same Φ. We see that cðtÞ ≈ 1 for
Φ ≤ 0.1 and that cðtÞ decreases at late times (t=τRC > 10)
by 0.25% and 1% forΦ ¼ 1 and 2: As our setup is closed, a
net ionic adsorption on the electrodes “desalinates” the cell
center [44]. To investigate the emergence of the slow
timescale at large applied potentials, in Fig. 3(e), we show
the charge relaxation 1 − σðtÞ=σeq (solid lines) and the
concentration decay ½cðtÞ − ceq�=ð1 − ceqÞ (dashed lines),
where ceq ≡ cðt=τRC → ∞Þ. At early times (t=τRC < 1), all
data for 1 − σðtÞ=σeq collapse onto the Φ ¼ 0.01 curve,
indicating that the initial ionic relaxation is described well
by the equivalent circuit model, even for higher Φ.
Thereafter, a second, slower relaxation emerges in
1 − σðtÞ=σeq, emerging more dominantly for higher Φ.
At late times, the slopes of 1 − σðtÞ=σeq and ½cðtÞ − ceq�=
ð1 − ceqÞ are the same. Numerical results [cf. Fig. S7(d) of
the Supplemental Material [39] ] for the adsorption time-
scale τad, the inverse of these slopes, show that τad=τRC is
independent of Φ (for all Φ considered) and scales linearly
with κL. Using the definition of τRC, we then recover the
L2=D scaling of τad suggested by Refs. [28,30]. To check
the robustness of our findings, we performed dynamical
density functional theory calculations of a room temper-
ature ionic liquid at the experimental voltage Ψ ¼ 0.5 V
[39]. Interestingly, the surface charge again shows two
distinct relaxation processes.
To investigate the effect of n > 1 for high potentials, in

Figs. 3(b), 3(d), and 3(f), we plot the same observables as in
Figs. 3(a), 3(c), and 3(e), now for Φ ¼ 2, κL ¼ 100,
H=L ¼ 1, and n ¼ f2; 3; 6g. Similar to our Φ ¼ 0.001
findings [condensed in τn of Eq. (4)], we see that the
charging dynamics at Φ ¼ 2 also slows down with
increasing n. The salt concentration at the cell center
cðtÞ [Fig. 3(d)] is again unaffected at early times
t=τRC < 5, after which it decays to an equilibrium value
that decreases with n. Thus, our model recovers the

(a) (b)

FIG. 2. Time dependence of the scaled (a) potential ϕðx; tÞ and
(b) the surface charge densities σiðtÞ for i ¼ f1;…; 5g of the
electrode for Φ ¼ 0.001, κL ¼ 100, H=L ¼ 1, and n ¼ 5. The
symbols and lines in (b) correspond to numerical and equivalent-
circuit model calculations, respectively.
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intuition that, for two electrodes of the same volume, the
one with more pores (and, hence, a large surface area)
desalinates an electrolyte reservoir more. In Fig. 3(f), we
see that the surface charge again decays on two distinct
timescales. Plotting the same data with time scaled by τn
instead of by τRC [cf. Fig. S8(c) of the Supplemental
Material [39] ], all 1 − σðtÞ=σeq collapse for t ≤ τn, which
shows that the circuit model decently describes the early-
time relaxation at high potentials as well. Conversely, at
late times, we see in Fig. 3(f) that 1 − σðtÞ=σeq and ½cðtÞ −
ceq�=ð1 − ceqÞ decay exponentially with a time constant τad
that does not depend on n for the parameter set under
consideration. Considering a larger set of κL, κh, and n, we
show τad in Fig. 4(a). From this figure we conclude that

τad ¼ α
ðH þ LÞ2

D
; ð5Þ

hence, the adsorption time τad depends on the total system
size. We show the κh-dependent prefactor α in Fig. 4(b) for
various κL, which reveals that α is κL independent and that

α ≈ 0.1 for κh > 10, while α increases with decreas-
ing κh ≤ 10.
Since τn [Eq. (4)] and τad [Eq. (5)] depend on κL, κh, and

n differently, both τad=τn ≪ 1, τad=τn ≈ 1, and τad=τn ≫ 1
are possible. Focusing here on n ≫ 1, which is relevant to
macroscopic electrodes, we find

τn
τad

≈

8>><
>>:

0.75
ακh

H
L L ≫ H;

0.69
ακh L ¼ H;

2
ακh

H
L L ≪ H:

ð6Þ

For H=L ¼ 1 (and n ≫ 1), we find that τn=τad ∼ 1 when-
ever κh < 10.
Finally, it is interesting to determine the applicability of

our stack-electrode model to experiments: Here, we con-
sider the setup of Ref. [26], where two carbon electrodes of
thickness H ¼ 0.5 mm, separation 2L ¼ 2.2 mm, poro-
sity p ¼ 0.65, mass density ϱ ¼ 5.8 × 105 gm−3, and
Brunauer-Emmett-Teller area ABET ¼ 1330 m2 g−1 were
used. Assuming each porous electrode to consist of two
flat solid carbon slabs, we get a crude estimate for the pore
size with h ¼ p=ðϱABETÞ ¼ 0.84 nm. The electrodes
were immersed in a 1 M NaCl solution at room temper-
ature, hence, κ−1 ¼ 0.3 nm and bulk diffusivity D ¼
1.6 × 10−9 m2 s−1. [We ignore that D is smaller in nano-
pores [32,41] and that different diffusivities may appear in
Eqs. (4) and (5) [45] ]. These parameters correspond, in our
model, to H=L ¼ 0.45, n ¼ 5.9 × 105, and κh ¼ 2.8,
hence, α ¼ 0.3. With Eqs. (4) and (5), we now find τn ¼
2.9 × 102 s and τad ¼ 4.8 × 102 s, roughly within 1 order
of magnitude from the two timescales (2 × 102 s and
9 × 103 s) observed in the experimental data of Ref. [26]
(see Supplemental Material for details [39]). Given the
simplicity of our model and crudeness of our estimates
of κh, n, and D, the remaining discrepancies are not
surprising. Yet, the stack-electrode model has bridged

(a) (b)

(c) (d)

(e) (f)

FIG. 3. The surface charge density (a), (b) σðtÞ=σeq, the salt
concentration at the cell center (c), (d) cðtÞ, and the charge
relaxation (e), (f) 1 − σðtÞ=σeq (solid lines) and the concentration
decay ½cðtÞ − ceq�=½cð0Þ − ceq� (dashed lines) of the stack-elec-
trode model for κL ¼ 100, in (a), (c), and (e) for n ¼ 1,H=L ¼ 0
at potentials Φ ¼ f0.01; 0.1; 1; 2g, and in (b), (d), and (f) for
Φ ¼ 2 and H=L ¼ 1, at n ¼ f2; 3; 6g.

(a) (b)

FIG. 4. (a) The dependence of the (scaled) adsorption timescale
τad on the (scaled) system size ðLþHÞ2 for κL ¼ 500 at
potential Φ ¼ 2 at several pore sizes κh ¼ f2; 5; 10; 20; 50g
and n ¼ f2; 5; 10; 20; 50; 100; 150; 200; 300g, with n ¼ 200
and n ¼ 300 for κh ¼ 20 and κh ¼ 50 off the scale of the plot.
(b) The prefactor α of [Eq. (5)] as a function of κh for κL ¼ 500
with a linear fit through the data in (a); κL ¼ 300 and 400 with
identical results.
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the 5-orders-of-magnitude gap between experimental relax-
ation times and those predicted in the n ¼ 1 model.
In summary, we studied the charging dynamics of

nanoporous electrodes with a simple electrode model. At
small applied potentials, numerical simulations of the PNP
equations are reproduced accurately by an equivalent
circuit model. This circuit model is akin to TL models
used often to fit experimental supercapacitor data. Notably,
however, the resistances, capacitances, and number of
branches in the circuit model are not fit parameters but
physically determined by our microscopic model. This
one-to-one relation allows us to interpret the long relax-
ation time of supercapacitors as being due to a large number
n of pores in nanoporous electrodes: The stack-
electrode model relaxes with the timescale τn ∼ ð2þ
0.75H=LÞnτRC. At higher potentials, the surface charge
still relaxes at early times with τn. Higher potentials
also lead to slow salt adsorption in the EDLs and con-
comitant depletion of the reservoir on the timescale
τad ∼ ðLþHÞ2=D. As salt and charge transport are
coupled, the long timescale τad also governs the late-time
surface charge relaxation, all the more so the higher the
applied potential. The two timescales τn and τad differ
orders of magnitude for small n but become similar when
electrodes have many pores, as is the case for super-
capacitors. Inserting parameters relating to a recent exper-
imental study [26], our simple model predicts the two
observed relaxation times roughly within 1 order of
magnitude. Thus, our model successfully bridged the 5-
orders-of-magnitude gap between theoretically predicted
and experimentally measured timescales, and could serve
as a basis for extensions that break the planar symmetry.
However, more work is needed to fully understand the
charging dynamics of porous electrodes, which should
include effects due to finite ion sizes, more realistic
modeling of pore morphology, Faradaic reactions, posi-
tion-dependent diffusion coefficients, etc.
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