
 

Why Phonon Scattering in Glasses is Universally Small at Low Temperatures
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We present a novel view of the standard model of tunneling two level systems (TLSs) to explain the
puzzling universal value of a quantity, C ∼ 3 × 10−4, that characterizes phonon scattering in glasses below
1 K as reflected in thermal conductivity, ultrasonic attenuation, internal friction, and the change in sound
velocity. Physical considerations lead to a broad distribution of phonon-TLS couplings that (1) exponen-
tially renormalize tunneling matrix elements, and (2) reduce the TLS density of states through TLS-TLS
interactions. We find good agreement between theory and experiment for a variety of individual glasses.
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Amorphous solids are ubiquitous and technologically
important, yet they still hold mysteries such as the universal
values of phonon scattering. Below 1 K, phonon scattering
reflected in the thermal conductivity (scaled with natural
units) [1], the internal friction (in the relaxation regime) [2],
the change in the sound velocity, and the resonant ultra-
sonic attenuation [3] are quantitatively very similar, regard-
less of the insulating glassy material. This universality is
quite surprising, and, though it has been known for quite
some time, remains a puzzle. Why does phonon scattering
in these materials show such a lack of sensitivity to their
composition and structure?
The standard model of tunneling two level systems

(TLSs) [4,5] qualitatively describes the behavior of glasses
below 1 K. It postulates the existence of independent
entities that tunnel between the two minima of a double
well potential with a wide distribution of tunneling matrix
elements and energy asymmetries. However, this model
does not quantitatively explain the measurements cited
above that depend on the coupling of phonons to tunneling
TLSs. In particular, these measurements all find a rather
universal value for a dimensionless coupling constant, C,
given by

C ¼ P̄γ2

ρv2
; ð1Þ

where P̄ is the density of states of tunneling entities, γ is the
strength of their coupling with phonons, ρ is the mass
density of the material, and v is the sound velocity given by
v−3 ¼ 1

3

P
s v

−3
s , where vs is the sound velocity for polari-

zation s. Within the TLS model, the internal friction Q−1 is
given byQ−1 ¼ ðπ=2ÞC, while the change in sound velocity
in the relaxation regime is Δv=v¼−1

2
ClnðT=ToÞ where To

is an arbitrary reference temperature. Finally, the scaled
thermal conductivity [1] is universal because it depends
on the ratio of the mean free path l of a phonon to its

wavelength λ in the following way: l=λ ¼ 1=ð2π2CÞ.
Measurements of these quantities find values of C between
2 × 10−4 and 5 × 10−4. The universal value of C is quite
surprising given that the parameters entering C are nomi-
nally independent and vary significantly from glass to glass.
Thus, a universal value for this quantity implies a degree of
coincidence that strains credulity, as noted by Leggett [6].
Another surprise is the energy scale of the coupling between
the sound waves and the TLS which is about 1 eV in
insulating glasses, an energy scale that does not match any
other in the problem.
Yu and Leggett [7] (YL) made the first attempt to

understand this coincidence. They assumed that phonon
mediated interactions between TLSs dominate the physics.
While their mean field scenario did, indeed, explain the
universality, the predicted universal value for C is of
order 1, whereas the observed value is 10−4. This failure
of a simple mean field theory approach is rather surprising.
What determines the value for C? A variety of rather
complicated approaches have been proposed to resolve this
question [8–11]. These include renormalization group
approaches [8,11], a random first order phase transition
associated with the glass transition [9], two different types
of TLS that couple differently to phonons [12], and
vibrational instability of harmonic oscillators associated
with the boson peak [10]. These models have been able to
arrive at the right order of magnitude for C, but the use of a
variety of assumptions and estimates have precluded the
ability to predict the value of C for different specific
glasses.
We propose a novel explanation based on three aspects

implicit in the standard TLS model that were ignored in the
original model [4,5] and were only partially considered
subsequently. First, the coupling between phonons and
TLSs implies that the TLSs can interact with each other [7].
Second, this coupling produces an exponential renormal-
ization of the tunneling matrix element due to phonon
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overlap between the two wells (a kind of polaron effect)
[13]. Third, phonons actually couple to the difference
between the elastic dipole moments in the two wells. If
the elastic dipole moment in each well has a random
orientation, the difference will also be random and will vary
from TLS to TLS, leading to a broad distribution of
couplings γ. Our model explains the universal value of
C as well as the observed (∼1 eV) value of the TLS-phonon
coupling at low frequencies.
We begin by introducing the model for a set of entities

that can tunnel between two states, e.g., “right” and “left”
well, randomly distributed in an elastic medium and
interacting with phonons

H ¼ Hph þ
1

2

X
i

ðεiσzi þ Δo
i σ

x
i Þ þ

1ffiffiffiffi
V

p
X
ik

γiϵ
i
kσ

z
i ; ð2Þ

where the free phonon Hamiltonian Hph ¼P
ks ℏωðksÞψ†

ksψks. ψ
†
ks and ψks are the phonon creation

and annihilation operators for wave vector k and polariza-
tion s, and ωðksÞ is the phonon dispersion relation [14].
εi is the energy asymmetry between the two wells and
Δo

i is the tunneling matrix element of the ith TLS. In
the TLS-phonon interaction [last term in Eq. (2)], ϵik ¼P

s ξksðiÞψks þ ξ�ksðiÞψ†
ks represents the scalar strain field,

where ξksðiÞ ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f½ℏωðksÞ�=2ρv2g

p
½Pab D

i
abe

s
abðkÞ�eikri

and γiDi
ab is the TLS elastic dipole moment with strength,

γi is shown as an explicit factor. ρ is the density of the
material. esabðkÞ ¼ 1

2
ðk̂aêsb þ k̂bêsaÞ, k̂ is the unit wave

vector and ê is the polarization unit vector. ri denotes
the position of the ith TLS, and σx;zi are Pauli matrices. For
simplicity, we ignore the distinction between transverse and
longitudinal TLS-phonon couplings.
Our model differs from the standard one in the distri-

butions of the parameters εi, Δo
i , and γi. In the standard

model, the energy asymmetry between the right and left
wells, εi, and the tunneling matrix element Δo

i are assumed
to vary from site to site, such that the probability per unit
volume to find a TLS with a given value of εi and Δo

i is

Pðε;ΔoÞ ¼ P̄=Δo; ð3Þ

with 0 < ε < εmax, and Δo
min < Δo < Δo

max. P̄ ¼
no=½εmax lnðΔo

max=Δo
minÞ�, and no is the density of TLS

per unit volume. Typically, P̄ is an adjustable parameter
fitted to experiments. The distribution of tunneling param-
eters is assumed to arise from a flat distribution of the
tunneling barrier heights [4]. The coupling to phonons is
chosen to be identical for all TLSs, i.e., γi ¼ γ, and is used
as a fitting parameter. The final assumption is that the
interaction term between TLSs and phonons is small,
permitting the use of perturbation theory to compute the
quantities above [15].

In contrast to the standard model, we note that the
phonon-TLS interaction implies that TLSs can interact with
one another via the strain field [7,13]. To effect this, we
integrate out the phonons with energies higher than the
tunneling matrix elements, i.e., ℏvkm > Δmax

o ∼ 10 K. (The
precise value of Δmax

o is not critical, since it ultimately only
enters logarithmically.) The result of the integration is [16]

H ¼ Hph;k<km þ 1

2

X
i

εiσ
z
i þ

1

2

X
i

Δo
maxe−γ

2
i =γ

2
oσxi

þ 1ffiffiffiffi
V

p
X
k<km;i

γiϵ
i
kσ

z
i þ

1

2

X
i≠j

σzi Jijσ
z
j; ð4Þ

where

γo ¼
ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρv2voℏωD

q
; ð5Þ

and vo is a unit volume of the chemical formula unit of the
glass as would be used to define a Debye frequency,ωD [1].
The third term shows that the tunneling matrix element has
been renormalized downward by a polaron effect [13] in
which the overlap of the phonon wave functions between
potential wells exponentially reduces the effective tunnel-
ing. Unlike the standard model where the tunneling
depends on the WKB exponent that incorporates the barrier
height, in our model, the exponent of the tunneling matrix
element depends on the TLS-phonon coupling γi. The
fourth term contains the remaining TLS-phonon interaction
which is weak and can be treated with perturbation theory
as in the standard model. The last term shows that a
TLS-TLS interaction term has been generated which is
quite complex due to the tensorial nature of elastic
dipole moments. Following YL, Jij is simplified to Jij ¼
ð1=ρv2Þsiγisjγj=r3ij where rij is the distance between TLS i
and j, and si ¼ �1 is a spin representation of the
orientation of the elastic dipoles (see [21] for the full
expressions).
To motivate our second assumption, let us review

why the YL scenario failed to give the correct value of
C. YL assumed γi ¼ γ ∀ i so that Jij ¼ ðγ2=ρv2Þsisj=r3ij in
Eq. (4). The 1=r3 interactions together with a simple
random mean field theory produces a density of states
independent of the original density of TLSs given by

P̄ ≈
ρv2

γ2
: ð6Þ

If we plug this into the expression for C, Eq. (1), we get
C ∼ 1; universal but 4 orders of magnitude too large. In
addition, P̄ is 2 orders of magnitude too large compared to
the density of states from specific heat measurements. P̄
could be reduced by increasing the strength of the inter-
actions γ but this will not solve the C ∼ 1 problem if the
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same value of γ controls the attenuation of low frequency
phonons.
To fix this problem, we note that, contrary to the standard

model, the coupling between TLSs and phonons should
actually have a broad distribution. To see why, note that in
Eq. (2), the TLS elastic dipole moment couples to the
phonons via a σz term, so that it is the difference between
the dipole moments in the right and left wells of the TLS
that couples to the strain field. Now, assume that the dipole
moment in each well has the same magnitude (γmax), but a
different orientation. The difference between the dipole
moments in the two wells is itself a dipole moment with
magnitude γ. For two randomly oriented vector dipoles, the
magnitude of the difference vector will have a uniform
distribution Pðγ2Þ ¼ 1=γ2max [16]. The case of elastic tensor
dipoles is more difficult but leads to a similar distribution,
albeit with an increase in probability for large values of γ
(see [16]).
The maximum possible value of the coupling, γmax, is

taken to be larger than the γ inferred from acoustic
experiments, leading to stronger interactions between
TLSs and, hence, a lower density of states P̄. In addition,
these random TLS-phonon couplings produce a wide
distribution of tunneling amplitudes due to the factor,
exp ð−γ2i =γ2oÞ, multiplying Δmax

o . TLSs with large values
of γi have very small tunneling rates, so they will not be
seen, e.g., in internal friction measurements. (The choice of
a single value Δmax

o for the tunneling matrix element
prefactor is based on the view that, while glasses have
no obvious order, any region is very similar to any
other [22]).
The next step is to approximate the TLS-TLS interaction

term in Eq. (4) using a poor man’s random mean field
theory [16]. The effective field felt by a given TLS is
the sum of the fields from all the surrounding TLSs,
most of which are “frozen” at low temperature: εi ≡
εiðJij ¼ 0Þ þP

j≠i Jijσ
z
j. Since we assume that the local

asymmetry variations are small compared to the inter-
actions between TLSs, we can neglect the εiðJij ¼ 0Þ term
so that the asymmetry energy εi arises entirely from
interactions. If we assume the σzj to be uncorrelated, the
sum will approximately have a Gaussian distribution with
zero mean (the Jij are equally positive and negative). The
variance is given by: VarðεiÞ ≈ ðγ2max=2ρv2Þ2ð4π=3VoÞ2
where Vo is the average volume per rearranging region.
For energies that are small compared to the variance, the
Gaussian distribution is essentially flat, and thus, the
probability of finding a TLS with a given (small) εi is
PðεiÞ ≈ 3ρv2Vo=ð2πÞ2=3γ2max. The density of states per unit
energy and unit volume, then, is simply [16]

ño ≈ ρv2=3γ2max: ð7Þ

With this random mean field approximation, the
Hamiltonian in Eq. (4) reduces to that of an independent

TLS model. The effect of interactions between TLSs has
been subsumed into no, the distribution for the energy
asymmetry per unit volume which is now expressed in
terms of material parameters. Together with the distribution
of γ, Pðγ2Þ ¼ 1=γ2max, and the expression for Δo,
Δo ≡ Δo

maxe−γ
2=γ2max , we have an independent TLS model

quite similar to the standard model. The key difference is
that γ controls the value of the tunneling matrix element Δo

in addition to the coupling between TLSs and phonons. It is
more convenient to change variables from (ε and γ) to (ε
and Δo). This gives

Pðε;ΔoÞ ¼ P̄
Δo ; ð8Þ

where

P̄ ¼ 1

3

ρv2

γ2max

�
γo
γmax

�
2

; ð9Þ

γ is now given in terms of Δo by

γ¼γoln1=2
�
Δo

max

Δo

�
¼

ffiffiffi
2

p

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρv2voℏωD

q
ln1=2

�
Δo

max

Δo

�
: ð10Þ

Let us bring all the pieces together and write our effective
noninteracting Hamiltonian

H ¼ Hphonon þ
1

2
εσz þ 1

2
Δoσx þ

X
k<km

γðΔoÞϵkσz; ð11Þ

where γ is an explicit function of Δo given by Eq. (10) and
the distribution of parameters is given by Eq. (8).
Experimental quantities of interest should be computed
with these expressions, though it is easier to do so by
simplifying Eq. (10) for γ as follows. With Δo

max ∼ 10 K,
ln1=2ðΔo

max=ΔoÞ in γ varies from about 1.5 for Δo ¼ 1 K to
about 5 for Δo ¼ 5 × 10−11 K (which corresponds to
an oscillation time of 1 second). Since Δo dictates which
TLS can respond on an experimental timescale, γ can be
replaced by γeff ¼ αγo with α equal to some constant in
the range from 1 to 5. For concreteness, we will use
α ¼ 2.5.
With this simplification, we can now use Eq. (1) to

calculate C with γ ¼ γeff and Eq. (9) for P̄ to obtain

C ¼ P̄
γ2eff
ρv2

¼ α2

3

�
γo
γmax

�
4

: ð12Þ

The last step is to estimate γmax which requires going
beyond elasticity. On general grounds, we expect γmax ∼
aρv2vo with a < 1 being a material independent constant
[23]. Using elastic stability criteria in disordered systems
yields a better estimate [25]
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γmax ¼
4

3

�
2

9π

�
2=3

ρv2vo ∼ 0.23ρv2vo: ð13Þ

This and other ways to estimate γmax are discussed further
in the Supplemental Material [16].
Table I shows the values of C obtained from Eq. (12)

using Eq. (13) for γmax for the insulating glasses for which
we have all the required data. We have used kbTD ¼
ℏωD ¼ ℏvð6π2=voÞ1=3. vo is obtained from the material’s
chemical formula (see Ref. [16] in [3]) using vo ¼ M=NAρ
where M is the molecular mass and NA is Avogadro’s
number. The only independent parameters are ρ, vl, vt, and
vo. The theory has no adjustable parameters.
While the overall comparison between theory and

experiment are good, the discrepancies call for a discus-
sion. First, we did not distinguish between longitudinal and
transverse modes. Given that, experimentally [3], the ratio
γ2l =v

2
l ≈ γ2t =v2t and that it is the ratio that matters for the

TLS-phonon interaction, the errors from this approximation
should not be large. In particular, this approximation cannot
explain the large discrepancy for LAT betweenCth andCexp

because Cth for LAT is 10 times lower than Cth ¼ Cexp for
SiO2, even though the experimental difference between γl;t
and vl;t for the two materials is not large. A more likely
source of the discrepancies is our estimate of the volume vo
of the molecular formula unit which enters into the Debye
temperature and is not well defined. One possibility is to
consider vo as the one adjustable parameter of the theory.
In short, the broad spectrum of TLS-phonon couplings γ

produces a distribution of tunneling parameters Δo, many
with values too small to contribute to ultrasonic measure-
ments due to the exponential dependence of the tunneling
on γ2. The TLSs that have tunneling amplitudes large
enough to participate in ultrasonic experiments result in
estimates of γ of order 1 eV. This observed energy scale
for γ is consistent with γ ∼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρv2voℏωD

p
from Eq. (10).

For example, using values appropriate for SiO2 (ρ ¼
2200 kg=m3, v ¼ 4200 m=s, vo ¼ 45 × 10−30 m3 and
ℏωD ¼ 350 K), we find γ ∼ 0.57 eV, in close agreement

with the experimental values of γ between 0.65 and 1 eV
[3]. On the other hand, P̄ is determined by the interaction
between TLSs, regardless of the amount of tunneling
suppression. Equation (9) shows that the scale of P̄ is
dictated by ρv2vo and γmax, and, hence, is lower than what
is found using Eq. (6) with the ultrasonic value γeff . This is
whyQ−1 ∼ 10−4 is so much smaller than in the original YL
approach. It should be possible to experimentally probe the
distribution of γ for TLSs that couple to superconducting
qubits and are altered by strain [26].
Finally, since our effective Hamiltonian in Eq. (11) and

the formofPðε;ΔoÞ in Eq. (8) reduce to those of the standard
TLS model, all the results of the standard model carry over
with, at most, logarithmic temperature corrections of those
quantities that depend on the TLS-phonon coupling since γ
has a logarithmic dependence onΔo as shown in Eq. (10). In
particular, the specific heat has the same temperature
dependence as in the standard TLS model. The thermal
conductivity κ at low temperatures is limited by the scatter-
ing of phonons from TLSs resulting in a logarithmic
temperature correction: κ ∼ T2=½1þ 2 lnðΔo

max=2kBTÞ�.
Everything discussed so far applies for temperatures

below 1 K. Let us briefly discuss what happens above
kbT ¼ Δo

max ∼ 10 K. The following estimate shows that the
tunneling barrier height V is comparable to Δo

max. If we
ignore the effect of phonons on tunneling, the bare
tunneling matrix element is given in the WKB approxi-
mation by

Δo
max ¼ ℏωDe−

ffiffiffiffiffiffiffiffi
2MV

p
d=ℏ: ð14Þ

Solving for V with ℏωD ∼ 350 K yields
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2ρvoV

p
d=ℏ ¼

lnð35Þ. Using the numbers for SiO2 with the barrier height
V in Kelvin and d in Å, we get 1.6

ffiffiffiffi
V

p
d ∼ lnð35Þ, which

means that V ∼ 5 K for d ¼ 1 Å and V ∼ 20 K for
d ¼ 0.5 Å. Thus, it is plausible that the barrier height is
in the 1–30 K range which corresponds roughly to the
temperature where there is the plateau in the thermal
conductivity and the boson peak in the specific heat.
At temperatures much greater than the barrier height,

thermal fluctuations make tunneling and the tunnel barrier
irrelevant. So tunneling no longer reduces the density
of states and, thus, for kbT ≫ V, we have P̄ ¼ ño ¼
ðρv2=3γ2maxÞ. Δo decouples from γ and the relevant cou-
pling to phonons is the average of γ2 which is γ2max=2.
Therefore, in this regime, C ¼ P̄hγ2i=ρv2 ¼ 1=6 and is
universal. The ratio of the mean free path to the wavelength
becomes

l
λ
¼ 1

2π2C
∼ 0.3: ð15Þ

This is observed in the thermal conductivity in the temper-
ature range above the plateau [1]. The intermediate temper-
ature regime (∼3–10 K) corresponding to the plateau is

TABLE I. C for dielectric glasses computed from Eq. (12). Data
from [3].

Glass ρ [kg=m3] v [m=s] vo [Å3] TD [K] Cexp ·104 Cth ·104

SiO2 2200 4163 45.3 348 2.9 2.9
BK7 2510 4195 41.8 360 3.3 2.5
SF4 4780 2481 40.7 215 2.75 0.9
SF57 5510 2327 55.2 182 2.98 0.9
SF59 6260 2131 40.2 185 2.78 1.0
V52 4800 2511 61.1 190 4.9 0.8
BALNA 4280 2569 39.9 224 4.8 1.2
LAT 5250 3105 68.2 226 3.7 0.3
Zn glass 4240 2580 45.9 215 3.6 2.0
PMMA 1180 1762 138.4 101 3.7 2.9
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very much material dependent and other processes come
into play here [27].
In conclusion, we have elucidated aspects implicit in the

standard TLS model that include strongly interacting TLSs
[6,7,13], exponentially renormalized tunneling matrix ele-
ments [13], and a heretofore unrecognized broad distribu-
tion of TLS-phonon couplings. This produces the correct
order of magnitude for Q−1 and the coupling γ seen in
acoustic experiments. Variations in the predicted values of
Q−1 from material to material are only slightly larger than
in experiments. At high temperatures, where tunneling is
irrelevant, we predict l=λ ∼ 1, consistent with thermal
conductivity experiments.
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