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Hierarchy of crystal lattice instabilities leading to a first-order phase transformation (PT) is found, which
consists of PT instability described by the order parameter and elastic instabilities under different
prescribed stress measures. After PT instability and prior to the elastic instability, an unexpected continuous
third-order PT was discovered, which is followed by a first-order PT after the elastic instability. Under
prescribed compressive second Piola-Kirchhoff stress, PT is third order until completion; it occurs without
hysteresis and dissipation, properties that are ideal for various applications. For heterogeneous
perturbations and PT, first-order PT occurs when the first elastic instability criterion (among criteria
corresponding to different stress measures) is met inside the volume, surprisingly independent of the stress
measure prescribed at the boundary.

DOI: 10.1103/PhysRevLett.124.075701

Introduction.—Theoretical description of the mechanical
stability of a crystal lattice is one of the essential bases for
understanding structural transformation in solids. The loss
of stability of crystal lattice causes structural transforma-
tions such as martensitic or displacive PTs, melting,
amorphization, twinning, dislocation nucleation, cavita-
tion, and fracture [1–7]. Therefore, crystal lattice instability
criteria have fundamental importance. However, despite the
numerous previous works in this direction, there are several
outstanding problems to be resolved when instability
occurs at finite strains.
The authors of the general elastic instability criteria for

finite strains [8,9] expressed them in terms of arbitrary
measures of stress and work-conjugate strain and empha-
sized that the instability criteria depend on the chosen
(prescribed) stress or strain measure. Since for hetero-
geneous solutions of a boundary-value problem stress
tensors can only be prescribed at the external boundary,
it is impossible to define which stress measure is prescribed
at each material point, i.e., elastic instability is ambiguous.
For applications, practically all instability criteria are
formulated in terms of the Cauchy stress [1–3,10–12]
without justification. Other approaches discussed in text-
books, e.g., Ref. [13], define elastic instability based on
loss of positive definiteness of some tensors of elastic
moduli (generalizing Born’s work [14] for finite strains) or
of acoustic tensor [15] (generalizing Hadamard’s work
[16]). They include, in particular, conditions for loss of
ellipticity of the elastostatic equations [17]. Since elastic

moduli and acoustic tensors depend on the choice of strain
and stress measures, this leads to a similar ambiguity.
Different criteria are collected and compared, e.g., in
Refs. [9,18]. In mathematical literature on martensitic
PTs [7,17], loss of stability is necessary for development
of martensitic and twinned microstructure.
The alternative approach to the material instability was

based on the utilization of the order parameters describing
PTs in the spirit of the Landau theory [4]. The PT instability
criterion for a homogeneous equilibrium phase under
spontaneous variation of the order parameters was derived
in Refs. [19,20] using a phase-field approach (PFA) to the
first-order PTs under large strains and applied stress tensor.
This criterion is linear in the normal components of the
Cauchy stress tensor, which is confirmed by atomistic
simulations for PTs Si I ↔ Si II [10–12] and graphite-
diamond [21].
In this Letter we resolve some outstanding problems in

the crystal lattice instability. Initially, we consider homo-
geneous perturbations and the PT process under a pre-
scribed homogeneous stress measure. As it was
mathematically proven in Refs. [19,20], the PT instability
criteria are independent of the stress measures. We found
here that they occur at the same strain. This is not the case
for elastic instability. That is why one has a hierarchy of
lattice instabilities corresponding to PT instability and
elastic instabilities under various prescribed stress mea-
sures. When under the prescribed stress measure, the PT
instability occurs prior to the elastic instability; a new type

PHYSICAL REVIEW LETTERS 124, 075701 (2020)

0031-9007=20=124(7)=075701(6) 075701-1 © 2020 American Physical Society

https://orcid.org/0000-0001-8556-4419
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.124.075701&domain=pdf&date_stamp=2020-02-21
https://doi.org/10.1103/PhysRevLett.124.075701
https://doi.org/10.1103/PhysRevLett.124.075701
https://doi.org/10.1103/PhysRevLett.124.075701
https://doi.org/10.1103/PhysRevLett.124.075701


of PT was discovered. There is no jump in strain and order
parameter, which occurs for first-order PT. The equilibrium
values of the order parameter, corresponding to stable
elastic equilibrium, continuously vary with varying
stresses, until elastic instability is reached. This PT is third
order in this stress range (see Supplemental Material [22]),
with the equilibrium structure Siin corresponding to the
intermediate structure along the initial part of the original
transformation path for the first-order PT. When elastic
instability is reached, the first-order PT Siin ↔ Si II occurs.
Since the second Piola-Kirchhoff stress (PK2S)-strain
curve under compression does not possess an elastic
instability point, PT under the prescribed PK2S is a
third-order PT until completion, and occurs without hys-
teresis and dissipation under cyclic loading, properties that
are ideal for various applications. This opens the possibility
of controlling PT order and properties by controlling
prescribed stress measures.
For heterogeneous perturbations and the PT process,

stresses are prescribed at the boundaries only. After satisfy-
ing the PT instability criterion and continuous third-order
PT, first-order PT to the product phase occurs when the first
elastic instability criterion (among criteria corresponding to
different stress measures) is met inside the volume, inde-
pendent of the prescribed stress measure at the boundary.
We designate contractions of tensors A and B over one

and two indices as A · B ¼ fAijBjkg and A∶B ¼ AijBji; I
is the unit tensor; the transpose of A is AT and the inverse of
A is A−1. The deformation gradient F ¼ Fe · UtðηÞ, the
mapping crystal from an undeformed into a deformed
configuration, is multiplicatively decomposed into elastic
Fe and transformational Ut parts; Ut maps the stress-free
crystal cell of the parent phase to that of the transforming
phase; η is the order parameter which varies from 0 for the
parent phase to 1 for the product phase. Lagrangian strain
is E ¼ 0.5ðFT · F − IÞ.
Phase transformation instability.—Instability of the

homogeneous equilibrium state of a phase under homo-
geneous perturbations can only be analyzed when a par-
ticular stress measure is prescribed at the boundary. It does
not mean that the Cauchy (true) stress σ or the first Piola-
Kirchhoff stress (PK1S) P ¼ Jσ · F−1T (force per unit
undeformed area), which directly participate in the boun-
dary conditions, can only be prescribed; here J ¼ detF. Any
other stress measure can be prescribed with the proper
feedback and control of σ orP in the experiment or atomistic
simulations [22]. We will also use the Kirchhoff stress
τ ¼ Jσ and the PK2S T ¼ F−1 · P ¼ JF−1 · σ · F−1T . We
will start with prescribed P.
PT instability for the thermodynamic equilibrium value

η ¼ 0 occurs and PT starts when the driving force X for
change in η in the Ginzburg-Landau equation (see
Ref. [22]) is getting positive and η grows. The general
PT criterion that follows from this definition is derived in
Ref. [20]. For cubic-to-tetragonal PT under action of three

normal-to-cubic-faces Cauchy stresses σi, this criterion is
simplified to

ðσ1 þ σ2Þεt1aε1 þ σ3εt3aε3 ≥ ðAþ 3ΔψθÞ=Je; ð1Þ

where εti are components of the transformation strain
εt ¼ Utð1Þ − I, Je ¼ detFe, and aε, A, and Δψθ are
interpolation constants in expression for UtðηÞ, the magni-
tude of the double-well barrier, and jump in the thermal
energy, respectively. This instability criterion was cali-
brated and verified for Si I ↔ Si II PTs [23] using results of
atomistic simulations [11,12].
Elastic instability is defined based on practical methods

used in experiments or simulations. If for the equilibrium
state under chosen fixed prescribed stresses at the boundary
for some spontaneous perturbations of the deformation
gradient ΔF the mechanical equilibrium cannot be kept,
then such a state is unstable. For homogenous states and
perturbation, such an instability criterion results in the
criterion presented in Ref. [8]. It is demonstrated that elastic
instability conditions depend on the prescribed stress (and
work-conjugate strain) measure [8,9]. We study the rela-
tionship between PT and elastic instability conditions for
different prescribed stresses using PT between semicon-
ducting Si I and metallic Si II using the PFA presented in
Refs. [20,22,23]. To model homogeneous processes, we
consider the solution for a single cubic finite element.
Elastic energy is ψe ¼ 0.5Ee∶CðηÞ∶Ee, where C is the
fourth-order elastic moduli tensor, which leads to linear
relationship T ¼ CðηÞ∶Ee. Other stress measures are non-
linearly related to Ee. To initiate PT, an initial value
η ¼ 0.01 is prescribed, and η cannot evolve below 0.01.
We apply σ1 ¼ σ2 ¼ 1 GPa and perform slow strain-
controlled compressive loading in the third direction,
meaning that for each strain η reaches stationary value.
Stress—strain E3 curves are shown in Fig. 1 for four stress
measures. They are the primary information for the analysis
of instability for heterogeneous processes as well as for the
case of stress-controlled loading. The strain-controlled
homogeneous loading does not allow the instability to
occur spontaneously.
For all stress measures, PT instability occurs at the same

strain (Fig. 1). This explains how PT instability is inde-
pendent of the prescribed stress measure.
For small strains, analytical expression for the equilib-

rium stress-order parameter (obtained from condition
X ¼ 0 for η varying from 0 to 1) and the corresponding
stress-strain curve describe reducing stress during PT [31].
That is why when PT starts at fixed stress, it continues to
complete until stress is equilibrated at the elastic branch of
the product phase. In contrast, for finite strain in Fig. 1 after
PT instability, each stress measure continues to grow and
reaches maximum (except T) corresponding to elastic
instability at corresponding prescribed stress and different
strains for different stress measures. Indeed, at prescribed

PHYSICAL REVIEW LETTERS 124, 075701 (2020)

075701-2



stress corresponding to the maximum point positive per-
turbation ΔE3 leads to reduction in elastic resistance and
unstable deformation transformation until PT completion
and equilibration of prescribed stress at the elastic branch of
the product phase. This is further analyzed considering
stress-order parameter curves under three different pre-
scribed stress measures (Fig. 2). The order parameter starts
growing at stresses corresponding to PT instability in
Fig. 1. With increasing stresses, the order parameter
evolves in a stable equilibrium and continuous way,
describing smooth transition to intermediate structures
Siin along the pathway Si I → Si II. Since at PT instability
stresses there is no jump in the order parameter and the
corresponding jump in strain and entropy, PT initially

occurs as a third-order PT [22]. When elastic instability
stress is reached for the prescribed stress measure, the order
parameter grows in a nonequilibrium way to 1 and the PT
proceeds until completion. This process is accompanied by
a jump in the order parameter, strain, and entropy.
Therefore, Siin → Si II PT is the first-order after elastic
instability. Thus, a hierarchy of the PTand elastic instability
points is found under different prescribed stress measures.
For the reverse, PT elastic instability and PT instability

coincide and occur at the same strain E3 ¼ 0.36 corre-
sponding to the local stress minimum for any prescribed
stress measure. The difference between stresses related to
elastic instability for direct and reverse PTs constitutes
stress hysteresis and energy dissipation during PT. During
equilibrium, third-order PT between the PT instability point
and the elastic instability point, the PT or deformation is
fully reversible without hysteresis for any prescribed stress.
Since the equilibrium PK2S-strain curve in Fig. 1 does not
have a maximum related to elastic instability point, PT
under the prescribed increasing PK2S is a third-order PT
until completion and occurs without hysteresis and dis-
sipation. Reducing hysteresis and dissipation are important
for various applications, e.g., for shape memory alloys
[32–34] or caloric materials [34–36]; see also Ref. [10].
PT and elastic instabilities under heterogeneous

perturbations in a finite volume.—During the solution of
boundary-value problems with heterogeneous fields,
chosen stress measure can only be prescribed at the
boundary, not for each material point within the bulk.
This does not allow one to directly apply elastic instability
criteria obtained for homogenous states. Consequently, PT
conditions under heterogeneous perturbations are not
currently defined. To address this question, let us consider
a PT in a sample of sizes 20 × 60 × 5 nm3 under the same
loading as for the homogeneous field (Fig. 3). The left face,
bottom face, and one of the faces in the thickness direction
are fixed by zero normal-to-the-face displacement and are
symmetry planes. The right face and the other face in the

FIG. 2. Stress-order parameter curves for homogeneous
deformation in the third direction in which a stress-controlled
compressive loading for three different prescribed stress mea-
sures is applied at σ1 ¼ σ2 ¼ 1 GPa.
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FIG. 3. Nanostructure evolution for a triaxial compressive-
tensile loading with initial random heterogeneous field η in the
range (0;0.01]. Compressive PK1S is applied at the top face up to
the value P̄ slightly above the peak for the Kirchhoff stress, but
below the peak points for the Cauchy stress and PK1S in Fig. 1,
along with σ1 ¼ σ2 ¼ 1 GPa. Presented solution is for the entire
sample after mirroring with respect to the symmetry planes of the
simulation field.

FIG. 1. Equilibrium stress-strain curves for homogeneous
deformation of Si in the third spacial direction in which a
strain-controlled compressive loading is applied at
σ1 ¼ σ2 ¼ 1 GPa. Hierarchy of PT and elastic instability points
are shown by markers. The intermediate phase of Si between
points of PT and elastic instability, which appears via third-order
PT, is designated as Siin. P̄ is the prescribed stress for problems
described below.
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thickness direction are under 1 GPa tensile Cauchy stress.
The PK1S is prescribed at the top face up to a value P̄
slightly above the first peak point for the Kirchhoff stress,
but below the peak points for the Cauchy stress and PK1S
in Fig. 1. Weak heterogeneity is introduced by a random
distribution of the initial values of η ⊆ ð0; 0.01�. The
solution is shown in Fig. 3.
From the results for a homogeneous field discussed

above, we expect that for the prescribed PK1S, the PT
should not continue unless we reach the PK1S peak point.
Surprisingly, although the PK1S peak point is not reached
yet, the exceeding strain for elastic instability for the
Kirchhoff stress is sufficient for the initiation and com-
pletion of the first-order PT. Within the bulk close to the
upper right corner, where the internal stresses due to
heterogeneity are maximum, the critical condition for
initiation of the first-order PT for the prescribed
Kirchhoff stress is met locally and the region of the
complete product phase is formed and grows, producing
complex stationary nanostructure with significant amount
of Si II. Residual austenite is stabilized by changes in
geometry of the sample.
However, for different loadings, while the general

principle is the same, the different stress measure produces
elastic instability prior to other stress measures. For
instance, we apply σ3 ¼ −8 GPa and increase tensile
strains E1 ¼ E2. The tensile stress-strain E2 curves are
shown in Fig. 4. In contrast to the previous compressive
loading, here the PK2S peaks first and PK1S, Kirchhoff,
and Cauchy stresses peak afterward. This means that PK2S
should be the first elastic instability point for tensile loading
under heterogeneous perturbations. For the initial values of
η ⊆ ð0; 0.01� we apply σ3 ¼ −8 GPa and increase tensile
σ1 ¼ σ2 up to σ̄ ¼ 10 GPa, slightly above the peak strain
for the PK2S but lower than the peak strains for other
stresses. As shown in Fig. 5, this is sufficient for initiation
of the first-order PT and its completion in the major part of

the sample. Since the general expressions for the instability
criteria in Refs. [8,9] are expressed in arbitrary work-
conjugate stress and strain measures, one should just
substitute stress measures responsible for instability
obtained above for different loadings to derive specific
elastic instability criteria.
In the above treatment we neglected phonon instability,

which may occur before elastic instability and limit maxi-
mum stress [37–42]. In particular for Si, phonon instability
occurs at hydrostatic pressure at 26 GPa [43] (well below
elastic instability pressure of 75.8 GPa [12]) and at a shear
strain of 0.22 for simple shear causing second-order PT
[38]. These results do not affect our solutions in Fig. 1
because for uniaxial compression at σ1 ¼ σ2 ¼ 0 GPa
phonon instability was not found before elastic instability
[44]; we are not aware of any published results on phonon
instability for loading considered in Fig. 4. Generally, if
stress-strain curves include information about phonon
instability (and other instabilities, like electronic, etc.)
and the following equilibrium processes obtained with
atomistic simulations (see, e.g., Refs. [24,38]), our approach
can be applied in the same way. In particular, it can be
applied to the PFA to PTwhen an order parameter describes
phonon instability [45].
Conclusions.—A number of basic long-term problems in

lattice instability under finite strains are resolved in this
Letter. Using PFA simulations for the Si I ↔ Si II PTs, it is
shown that the PT instability is independent of the
prescribed stress measures because it occurs at the same
strain for any prescribed stress. Prior to elastic instability
and after PT instability, a continuous third-order PT is
discovered, which is followed by a first-order PT after
elastic instability until PT completion. Thus the trans-
formation path changes to Si I → Siin → Si II. Third-order
PTs are quite rarely discussed in literature (see, e.g.,
Ref. [46] and references); we are not aware of any previous
reports for elastic materials or in connection with the first-
order PTs. Under prescribed compressive second Piola-
Kirchhoff stress, PT is third order until completion; it
occurs without hysteresis and dissipation under cyclic
loading, properties that are ideal for various applications.

FIG. 4. Equilibrium stress-strain curves for homogeneous
deformation under σ3 ¼ −8 GPa and increasing tensile strains
E1 ¼ E2.
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FIG. 5. Nanostructure evolution for random distribution of
initial η ⊆ ð0; 0.01�, σ3 ¼ −8 GPa and increasing tensile σ1 ¼ σ2
up to σ̄ ¼ 10 GPa, slightly above the peak strain for the PK2S but
lower than the peak strains for other stresses.
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Since for heterogeneous perturbations stress tensors can
only be prescribed at the external boundary, it is impossible
to define which stress measure is prescribed at each
material point, i.e., elastic instability is ambiguous. After
third-order PT, the first-order PT occurs when the first
elastic instability criterion (among criteria corresponding to
different stress measures) is met inside the volume, sur-
prisingly independent of the stress measure prescribed at
the boundary. For two considered loadings, the elastic
instability corresponds to the prescribed Kirchhoff stress
and PK2S, respectively, even when the Cauchy stress was
prescribed. None of our results suggests Cauchy-stress-
based criterion, in contrast to most of the previous
publications. This also means that finding the PT criterion
from atomistic simulations [3,10–12] in terms of the
Cauchy stress should be reconsidered. The general lattice
instability criterion should be found for all possible
prescribed stress tensors, which involves the choice of
the local prescribed stresses corresponding to the first
instability being different for different stress states. One
more problem that was not considered here is taking into
account the finite particle and lattice rotations. This
problem was solved for PT instability and homogeneous
perturbations in Refs. [19,20], which may help, along with
the numerical procedure presented here, to treat elastic
instabilities under heterogeneous perturbations.
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