
 

Deterministic Scheme for Two-Dimensional Type-II Dirac Points and Experimental
Realization in Acoustics

Xiaoxiao Wu ,1 Xin Li,2 Ruo-Yang Zhang ,1 Xiao Xiang,2 Jingxuan Tian,3 Yingzhou Huang ,2 Shuxia Wang,2

Bo Hou,4,5 C. T. Chan,1 and Weijia Wen1,6,*
1Department of Physics, The Hong Kong University of Science and Technology,

Clear Water Bay, Kowloon, Hong Kong, China
2Chongqing Key Laboratory of Soft Condensed Matter Physics and Smart Materials, College of Physics, Chongqing University,

Chongqing 400044, China
3Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Hong Kong, China

4School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology,
Soochow University, Suzhou 215006, China

5Key Laboratory of Modern Optical Technologies of Ministry of Education &
Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Suzhou 215006, China

6Materials Genome Institute, Shanghai University, Shanghai 200444, China

(Received 10 July 2019; accepted 23 January 2020; published 21 February 2020)

Low-energy electrons near Dirac/Weyl nodal points mimic massless relativistic fermions. However, as
they are not constrained by Lorentz invariance, they can exhibit tipped-over type-II Dirac/Weyl cones that
provide highly anisotropic physical properties and responses, creating unique possibilities. Recently, they
have been observed in several quantum and classical systems. Yet, there is still no simple and deterministic
strategy to realize them since their nodal points are accidental degeneracies, unlike symmetry-guaranteed
type-I counterparts. Here, we propose a band-folding scheme for constructing type-II Dirac points, and we
use a tight-binding analysis to unveil its generality and deterministic nature. Through realizations in
acoustics, type-II Dirac points are experimentally visualized and investigated using near-field mappings.
As a direct effect of tipped-over Dirac cones, strongly tilted kink states originating from their valley-Hall
properties are also observed. This deterministic scheme could serve as a platform for further investigations
of intriguing physics associated with various strongly Lorentz-violating nodal points.
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Introduction.—In condensed matters, low-energy elec-
trons around two- or three-dimensional (2D or 3D) Dirac/
Weyl points mimic massless fermions in high-energy
physics. However, since the stringent Lorentz invariance
is absent in a lattice due to breaking of continuous rota-
tional symmetry [1], their two- or three-dimensional (2D or
3D) Dirac/Weyl cones can be tilted, which is first noted in
various Dirac materials such as strained graphene [2,3]. If
the tilt becomes strong enough to tip over cones in a
specific direction, type-II Dirac/Weyl points (DPs/WPs)
arise, with nodal points, originally isolated (Fermi surface
of type-I DPs/WPs), becoming contacts of electronlike and
holelike Fermi pockets (type-II DPs/WPs) [4–11]. Such
topological transitions of Fermi surfaces lead to highly
anisotropic optical [6,10], magnetic [5,11], and electrical
[7,8] properties. In fact, these topological transitions are not
unique to band structures of electronic materials, and
should be realizable for any type of Bloch mode. Very
recently, they have been proposed in classical systems
[12–21], and experimentally demonstrated [16,17,20].
However, as accidental degeneracies, 2D type-II DPs, if
they exist, only emerge at hardly predictable low-symmetry

points in reciprocal space, and they still lack generally
applicable design strategies, not to mention more compli-
cated 3D type-II DPs/WPs. In contrast, type-I DPs are
guaranteed to exist at corners of the first Brillouin zone
(FBZ) using triangular, honeycomb, or kagome lattices
[22]. This property serves as a basis for further research of
many (pseudo)relativistic and topological phenomena asso-
ciated with type-I DPs, such as Klein tunneling [23,24],
Zitterbewegung effects [25–27], and various topological
insulators [28–37].
In this Letter, to provide 2D type-II DPs such simple and

robust platforms for further research, we introduce a
deterministic construction scheme based on the band-
folding mechanism [28], with its physics illustrated using
general tight-binding models. A direct experimental reali-
zation in acoustics is demonstrated, in which sonic crystals
comprising bow-tie shaped holes are investigated using
near-field mappings. Dispersions of type-II DPs are clearly
resolved, featuring deterministic contacts between electron-
like and holelike Fermi pockets. Strongly tilted valley-Hall
kink modes, a direct manifestation of tipped-over Dirac
cones, are also observed. The experimental results achieve
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quantitative agreement with theoretical and numerical pre-
dictions. Further, the deterministic scheme can be extended
to more intriguing cases, and serve as a basis for systematic
investigations of (pseudo)relativistic and topological phe-
nomena of strongly Lorentz-violating nodal points.
Results.—We begin explaining our scheme from a sonic

crystal as shown in Fig. 1(a). It comprises bow-tie shaped
blind holes (details in insets) arranged in a rectangular
lattice, drilled on an acoustic-hard plate immersed in air. Its
primitive cell is denoted by the green shaded region. The first
resonance of each hole is an s-orbital cavity mode, aniso-
tropic because of the bow-tie shape [18]. Polaritonic
couplings [38,39] between plane waves and these s-orbital
cavity modes give rise to spoof surface acoustic wave
(SSAW) modes, forming the 1st band of the sonic
crystal (see Fig. S1 in the Supplemental Material [40]).
Conveniently, we choose the following geometric parame-
ters, lattice constants ax=2 ¼ 12.5 and ay ¼ 16 mm, depth
of holes h ¼ 10 mm, and bow-tie shape lx ¼ 7, ly ¼ 14,
and w ¼ 3 mm.
Then, if we deliberately consider an enlarged unit cell

[orange shaded region in Fig. 1(a)] comprising two
primitive cells, the 1st band will be folded back [28].
We perform full-wave simulations including viscothermal
losses (see Note S15 in the Supplemental Material [40] for
setup details). The obtained nominal “1st” and “2nd” bands
are degenerate along the XM direction [Fig. 1(b)], since it is
exactly the fold line in reciprocal space [Fig. 1(c)]. Such
degeneracy could serve as a basis for constructing type-II
DPs, if we can lift the degeneracy along the line except a
single point. The first step is to transform enlarged unit cells
into “real” primitive unit cells. We decompose enlarged unit
cells into two sublattices, left holes A and right holes B [see
inset in Fig. 1(b)], and locally rotate left holes (sublattice A)
with 90° [Fig. 1(d)]. Subsequently, the band structure
[Fig. 1(e)] shows that 1st and 2nd bands now only touch
linearly at the midpoint Dðπ=ax; π=ð2ayÞÞ of the XM
direction, where a type-II DP emerges at frequency
fD ¼ 6.39 kHz, as highlighted by the green-dashed rec-
tangle. Because of time-reversal symmetry, they will also
touch at another inequivalent point D0ðπ=ax;−π=ð2ayÞÞ,
and inset in Fig. 1(e) summarizes their distribution. The 3D
band structure around theD point [Fig. 1(f)] visualizes with
great detail the point touch between the two bands. Field
maps at the D point [Figs. 1(g) and 1(h)] reveal that the
degenerate doublets, with pressure localized in different
sublattices, exhibit opposite parities with respect to the
mirror symmetry ΣA (yellow dashed lines), ensuring their
orthogonality. Thus, the symmetric (antisymmetric) eigen-
mode belongs to the A1 (A2) representation of the C2v point
group, and the type-II DPs only correspond to accidental
degeneracies. However, the emergence and distribution of
the type-II DPs are indeed insensitive to shapes and
geometric parameters of the mirror-symmetric holes (see
Fig. S2 in the Supplemental Material [40] for further

examples, and Note S1 for preference of bow-tie shapes).
In addition, the physics of type-II DPs is not affected
by viscothermal losses in the sonic crystal, which only
slightly shift frequencies of its bands (see Fig. S11 for
discussion [40]).

FIG. 1. Band-folding creation of type-II DPs. (a) Initial sonic
crystal, an acoustic-hard plate with bow-tie shaped blind holes
arranged in a rectangular lattice. Green (orange) shaded region
denotes a primitive (enlarged) unit cell. Perspective view of
primitive cell in bottom-right inset, sectional side view in top-
right inset. (b) Calculated band structure of (a) using enlarged unit
cells depicted in inset, comprising sublattices A and B. Dashed
lines: sound cone. (c) Folding mechanism of the first Brillouin
zone when considering enlarged unit cells. Outer green region
(XXPMPM) of the original FBZ are folded back into the inner
orange region (ΓXMY) along the fold line (XM). (d) Rotation
(90°) of left holes (sublattice A) in enlarged unit cells transform
them into real unit cells (orange shaded region). Inset: schematic
of transformed unit cell. (e) Band structure of sonic crystal in (d).
The 1st (red) and 2nd (blue) bands linearly touch each other in
midpoint D of the XM direction, highlighted by the green dashed
rectangle. Inset: distribution of type-II DPs in the Brillouin zone.
Because of time-reversal symmetry, another inequivalent type-II
DP exists at D0. (f) 3D band structure around the D point. At
Dirac frequency 6.39 kHz (green, semi-transparent plane) of the
type-II DP, its iso-frequency contour features a pair of crossing
lines contacting at D. (g),(h) Pressure fields of degenerate
doublets at D, corresponding to eigenvalues �1 of mirror
symmetry ΣA indicated by orange dashed lines. Green scale
bar: 10 mm.
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Before investigating the mechanism, we first perform
near-field mappings with 3D-printed samples to confirm
our findings [experiment setup in Fig. 2(a), see Note S15
in Ref. [40] for details). From Fourier transforms of
mapped pressure fields, the Fourier spectra along high-
symmetry directions in reciprocal space are retrieved
[Fig. 2(b)]. Bright strips signify the SSAW modes excited
in experiments [41,42], whose dispersions agree excel-
lently with the simulated one (green dots). Further,
Fourier spectra in the whole Brillouin zone are stacked
with increasing frequency [Fig. 2(c)], where bright strips
indicate iso-frequency contours (IFCs) of the sonic
crystal. Numerically calculated IFCs at corresponding
frequencies are plotted for reference [Fig. 2(d)], and their
evolutions agree quite well: when frequency increases,
the number of closed IFCs, that is, Fermi pockets [1],
changes from 1 to 2, and finally to 1 again. Amidst this
transition, type-II DPs emerge as the contacts between the
“electronlike” (1st band) and “holelike” (2nd band) Fermi
pockets [9,14,16,18].
To analytically investigate the mechanism, we employ

a tight-binding model [Fig. 3(a)] since s-orbital SSAW
modes are well localized. We first only consider nearest-
neighbor (NN) hoppings, including the x direction tx,
and the y direction tyA and tyB. From Fourier trans-
forms on tight-binding Hamiltonians in real space
(see Note S15 [40]), we obtain Hamiltonian HðkÞ in
reciprocal space,

HðkÞ¼
�
ω0−tyAðeikyayþe−ikyayÞ −txð1þeikxaxÞ

−txð1þe−ikxaxÞ ω0−tyBðeikyayþe−ikyayÞ

�
;

ð1Þ
where ω0 is the on-site angular frequency of both
sublattices, and k ¼ ðkx; kyÞ is the Bloch wave vector.
Around the midpoint Dðπ=ax; π=ð2ayÞÞ of the XM direc-
tion, we expand HðkÞ with respect to the deviation
δk ¼ ðδkx; δkyÞ. To the first order, we have (see Note
S2 for details [40])

HðDþδkÞ¼ tysayδkyσ0− txaxδkxσ2− tydayδkyσ3þω0σ0;

ð2Þ

FIG. 2. Experimental imaging of type-II DPs. (a) Photograph of
experimental setup for near-field mappings (see note S15 in the
Supplemental Material for details [40]). Inset: close top view of
the 3D printed sample. (b) Fourier spectra along high-symmetry
directions of FBZ. Green dots indicate numerical dispersion.
Only regions outside the sound cone are shown. (c) Fourier
spectra at selected frequencies. Bright strips represent excited
SSAW modes, indicating their IFCs in reciprocal space. (d) Nu-
merically calculated IFCs at corresponding frequencies. Type-II
DPs manifest themselves as the contacts of “electronlike” (red
IFCs) and “holelike” (blue IFCs) Fermi pockets. Note that a
Brillouin zone is topologically equivalent to a torus [43]. FIG. 3. Tight-binding analysis of band-folding mechanism.

(a) Tight-binding model of sonic crystal in Fig. 1(d). The s-orbital
SSAW modes in sublattice A (B) are represented by red (blue)
lattice points. Only nearest-neighbor hoppings are considered. (b),
(c) Band structure near the D point along the x direction (b) or y
direction (c), calculated from simulations (sold lines) or the tight-
binding model (scatters) in (a). (d) The tight-binding model when
sublattice B is shifted with displacement δr ¼ ðδx; 0Þ, which
breaks mirror symmetry ΣA and creates hopping difference δtx
along the x direction. Inset: detailed schematic of displacement.
(e) Band structure near theD point along the y direction for type-P
(δx ¼ þ1 mm) and type-N (δx ¼ −1 mm) unit cells, calculated
from simulations (sold lines) or tight-binding model (scatters) in
(d). (f) Berry curvature distributions for type-P and type-N unit
cells, calculated from the tight-binding model in (d) (see Fig. S6
and Note S8 in the Supplemental Material [40]).
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where σ0 is the identity matrix and σi (i ¼ 1, 2, 3) are
Pauli matrices, with parameters tys ¼ tyA þ tyB and tyd ¼
tyB − tyA. The Taylor-expanded Hamiltonian in Eq. (2) is
identical to Hamiltonians of type-II DPs obtained from
the lowest-order k · pmethod in previous works [9,14,16]
up to unitary transformations. Because of the first tilt
term, the Dirac cone at the D point is tipped over towards
the þy direction, and since jtysj > jtydj, the tilt term
dominates, resulting in a type-II DP [16,44]. To confirm
this picture, we calculate (angular) eigenfrequencies from
Eq. (2),

ω�ðDþδkÞ¼ω0þvysδky�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðvxδkxÞ2þðvydδkyÞ2

q
; ð3Þ

where the sign þ (−) denotes the 2nd (1st) band, and
parameters vx ¼ txax, vys ¼ tysay, and vyd ¼ tyday char-
acterize anisotropic group velocities (see Note S15 for
fitting of parameters [40]). As established in Eq. (3),
which agrees well with numerical dispersions [Figs. 3(b)
and 3(c)], the type-II DP is fixed at both a deterministic
location (D point) and frequency (ω0). The conclusion,
due to collaboration of mirror symmetry and identical on-
site frequencies, is still valid after taking into account
next-nearest-neighbor hoppings (see Notes S4 and S5 in
the Supplemental Material [40]).
To ensure this simple model has captured the essence of

the deterministic scheme, we consider another sonic crystal
comprising coupled resonant cavities [34]. Under similar
perturbations, it also realizes type-II DPs (see Note S3 and
Fig. S3 in Ref. [40]). Therefore, when a mirror-symmetric
rectangular (or square) lattice is folded along the mirror
direction, a strong tilt naturally arises in its band structure
on the corresponding FBZ boundary. Then, a pair of mirror-
symmetry protected type-II DPs deterministically emerge
around midpoints of the FBZ boundary once we detune
NN hoppings in each sublattice along the “unfolded”
direction (see argument on its deterministic nature [45]
in Note S13 [40]).
For further corroboration of the scheme, we examine a

direct effect of tipped-over Dirac cones: valley-Hall kink
states (VHKSs), induced by localized Berry curvatures of
gapped type-II DPs, are so strongly tilted that they
propagate along the same direction at each “valley” when
hosted in opposite supercells. They may be termed type-II
VHKSs to distinguish from type-I VHKSs induced by
gapped type-I DPs [29,32,46,47], which propagate along
opposite directions when hosted in opposite supercells. To
create type-II VHKSs, we first introduce perturbations
breaking mirror symmetry ΣA which protects type-II
DPs. Simply, we shift sublattice B with displacement
δr ¼ ðδx; 0Þ, which introduces hopping difference δtx in
the x direction [Fig. 3(d)], resulting in a mass term (see
Note S6 [40]). We label a unit cell as type-P (type-N) if
δx > 0 (δx < 0). Two opposite shifts δr ¼ ð�δx; 0Þ lead to

identical band structures but opposite valley-Hall proper-
ties. Without loss of generality, we focus on representing
cases δx ¼ �1 mm. Again, the tight-binding model cor-
rectly depicts band structure around the D point [Fig. 3(e)],
featuring a partial band gap (see also Fig. S4 in Ref. [40]).
Then, we calculate their 1st-band Berry curvatures Ωz;−
using a tight-binding Hamiltonian including hopping dif-
ference δtx (see Note S8 [40]) [48–52]. Anisotropic peaks
emerge around the D=D0 point [Fig. 3(f)], and they can be
approximated as (see Note S8 [40])

ΩzD=D0;−ðδkÞ ¼ � vxvydΔp

2½ðvxδkxÞ2 þ ðvydδkyÞ2 þ Δ2
p�3=2

; ð4Þ

where Δp ¼ 2δtx, and the sign þ (−) corresponds to the D
(D0) point. Since the Berry curvatures are localized, it is
possible to define half-quantized valley-Chern numbers
[16,29,46] around the D=D0 point on half of the FBZ
(HFBZ)

CD=D0
V;− ¼ 1

2π

Z
HFBZ

ΩzD=D0;−d2k ¼ � 1

2
sgnðvydΔpÞ; ð5Þ

which is þ1=2 (−1=2) for type-P (type-N) at the D point,
and reversed at the D0 point (see Note S8 [40]). For type-II
VHKSs, positive (negative) differences of valley-Chern
numbers indicate faster (slower) propagations, instead
of forward (backward) propagations for type-I VHKSs
[29,46] (see Note S9 [40] for derivations).
We then construct two possible supercells comprising a

kink running along the y direction, which we refer to as the
PN-configuration [Fig. 4(a)] and the NP-configuration
[Fig. 4(b)]. The NP-configuration is mirror (ΣA) opposite
of the PN-configuration, and they cannot be transformed
into each other through SO(3) operations. As shown in their
projected band structures [Fig. 4(c)], strongly tilted type-II
VHKSs emerge in the partial band gap, and their pressure
fields [Figs. 4(d) and 4(e)] both demonstrate exponential
decay profiles in bulk domains (see Fig. S7 for precise
distributions [40]). They can give rise to time-reversal
symmetric counterparts of antichiral edge states (see Note
S14 [40]) [33,53]. They also exhibit sublattice polarizations
with their pressure fields almost exclusively localized in
sublattice A or B (see Note S9 [40] for derivations).
Besides, it is found that there are no kink states for
interfaces along the x direction (see Fig. S12 [40]).
Last, we perform near-field mappings to detect type-II

VHKSs. Spatial Fourier spectra [Figs. 4(f) and 4(g)],
averaged over �ky, are retrieved from imaged pressure
fields. They correspond to the PN-configuration and NP-
configuration samples, respectively, both stimulated with
matched sublattice polarizations (see Note S15 [40] for
details). In the spectra, bright narrow strips clearly dem-
onstrate successfully excited type-II VHKSs and they agree
quantitatively with numerically calculated dispersions
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(dark red and blue dots). To visualize the excited states, we
plot imaged field maps at 6.40 kHz (see Fig. S8 in the
Supplemental Material [40] for other frequencies) for the
PN-configuration (NP-configuration) sample in Fig. 4(h)
[Fig. 4(i)]. It is seen that type-II VHKSs in both samples
propagate along the þy direction, alongside bulk states
spreading laterally (see their time-harmonic animations in
movies S1 and S2 in the Supplemental Material [40]).
Moreover, pressure fields of type-II VHKSs in the PN-
configuration (NP-configuration) sample are largely local-
ized in sublattice B (A), as displayed in their enlarged views
[Figs. 4(j) and 4(k)], agreeing with predicted sublattice
polarizations. When the samples are stimulated with

mismatched sublattice polarizations, type-II VHKSs are
much more weakly excited (see Fig. S9 and movies S3 and
S4 in the Supplemental Material [40]). For comparison, we
have also imaged fields of a reference sample comprising
only type-N unit cells, and only bulk bands are observed in
both real and reciprocal spaces (see Fig. S10 and movies S5
and S6 in Ref. [40]).
Finally, we note that our scheme can be directly extended

to deterministically realize other strongly Lorentz-violating
nodal points. For example, 3D type-II DPs [54,55] are
realized by alternating stacking of coupled resonant cavities
and their sublattice-polarized surface-arc states are dem-
onstrated (see Note S10 [40]), while 2D type-III DPs

FIG. 4. Observation of type-II valley-Hall kink states (VHKSs). (a),(b) Schematics of supercells periodic along the y direction, formed
by type-P and type-N unit cells, referred to as the PN-configuration (a) and NP-configuration (b), respectively. Dashed lines indicate
kinks between two domains. (c) Numerically calculated projected band structure. Gray shaded regions correspond to bulk bands. Type-II
VHKS of the PN-configuration (NP-configuration) is denoted by red (blue) solid line. (d),(e) Simulated pressure fields of type-II
VHKSs at the projected D point (ky ¼ π=ð2ayÞ), for the PN-configuration (d) and NP-configuration (e), respectively. Black arrows
indicate where pressure is the strongest. (f),(g) Fourier spectra obtained from measured pressure field maps for the PN-configuration (f)
and NP-configuration (g), excited with matched sublattice polarizations. Dark red (blue) dots indicate numerical dispersion of type-II
VHKSs in the PN-configuration (NP-configuration). (h), (i) Experimentally imaged pressure fields at 6.40 kHz for the PN-configuration
(h) and NP-configuration (i). Yellow stars indicate where source sounds are injected. (j),(k) Enlarged views of selected areas enclosed by
black dashed rectangles in (h),(i), revealing sublattice polarizations of type-II VHKSs in the PN-configuration (j) and NP-configuration
(k). Green scale bar: 16 mm.
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(Fermi surface critically tilted, turning into a line) [56] are
realized by eliminating NN hoppings in one sublattice
(see Note S11 [40]). Until now, most classical strongly
Lorentz-violating nodal points are only realized in pho-
tonics [16,56,57], but they usually employ polarization as a
key degree of freedom, which is intrinsically absent in
sound, a scalar field. Our deterministic schemes thus
provide general recipes for realizing them in scalar waves
lacking any internal degrees of freedom.
Discussion.—In summary, we propose and experimen-

tally confirm a deterministic scheme for type-II DPs based
on the band-folding mechanism. Realized in acoustics, the
scheme is further understood through a general tight-
binding model, and has potential to inspire construction
of type-II DPs in other research areas, such as electronic
materials and coupled photonic waveguides. The scheme
can be extended to deterministically realize other strongly
Lorentz-violating nodal points, such as 3D type-II DPs and
2D type-III DPs (see notes S10 and S11 [40]). With an
additional parameter, the scheme also leads to type-II
synthetic WPs (see note S12 [40]). If more parameters
are introduced, it could enable constructions of peculiar
topological defects occurring at higher synthetic dimen-
sions. The deterministic scheme could serve as a versatile
platform for further investigations on topological phenom-
ena, such as Klein tunneling [23,24], Zitterbewegung
effects [25–27], synthetic Landau levels [35], and non-
Hermitian physics [31], in the context of strongly Lorentz-
violating nodal points, which may lead to exotic properties.
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