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We analyze a new model for growing networks, the constrained Leath invasion percolation model.
Cluster dynamics are characterized by bursts in space and time. The model quantitatively reproduces the
observed frequency-magnitude scaling of earthquakes in the limit that the occupation probability
approaches the critical bond percolation probability in d ¼ 2. The model may have application to other
systems characterized by burst dynamics.
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Introduction.—Many driven physical processes in nature
do not occur at constant rates, but rather have a burstlike
character in space and time, clustering in space and time.
Examples include earthquake seismicity [1], price changes
price in financialmarkets [2], avalanche dynamics and forest
fires [3], and transcriptional bursts in genomic systems [4].
In turn, many of these systems and their associated models
have been mapped onto percolation models, which is a
simple model for clustering [5]. An example of this type of
mapping for financial markets is described in Ref. [6]. An
example for earthquake systems is discussed in Ref. [7].
Here we discuss the invasion percolation model [8] that

was originally developed to describe fluid injection into a
porous medium, then apply it specifically to the problem of
earthquake dynamics and statistics. Invasion percolation
(IP) is a variation on the standard models of site and bond
percolation [5], and is a type of connected graph-theoretic
model wherein the nodes and edges can represent many
types of quantities.
Similar to the Leath method [9] in site percolation, one

starts with a central seed site and grows the cluster outward.
However, in the IP model, bonds connected to existing
cluster sites are opened in order of lowest probability or bond
strength first, then next-lowest, and so forth. Eventually the
cluster grows to “infinity” (or a predefined maximum size).
One of the characteristics of the classical IP model is that
there is only one timescale, the timescale onwhich bonds are
progressively opened.
To summarize our results, we propose a new model

for burstlike dynamics, the constrained Leath invasion
percolation (CLIP) model. We show that this model is
loopless similar to the model in Ref. [10]. Interpreting the
percolation sites as units of energy release, we show that the
model reproduces the observed natural scaling of earth-
quakes with the correct scaling exponent in the limit
that the occupation probability equals the critical bond

percolation probability in d ¼ 2, pocc ¼ 0.5. Comparing
these results to observed scaling of earthquakes in several
geological regimes, we find good quantitative agreement.
Bursts.—One of the characteristics of the IP model is the

existence of bursts. Once a strong bond is opened, fluid may
enter a region where weaker bonds may exist [3,11,12].
Burst sites are defined relative to an (arbitrarily) defined
burst threshold strength, usually taken to be very near the
critical bond probability value pbc. A burst is defined to
include all bonds that are opened sequentially, where the
bond strength is less than an arbitrarily defined burst
threshold strength. As a practical example, Ref. [13] asso-
ciated invasion percolation bursts with resistance jumps
observed in laboratory studies of mercury injection into a
porous medium.
A burst begins when an opened bond strength is smaller

than the arbitrarily defined threshold and ends when an
opened bond strength is greater than the threshold. Because
the bursts are defined in this way, the particular dynamics
used to grow the cluster will determine whether the
individual bursts are spatially connected as well as tempo-
rally sequential. In other words, a sequence of opened
bonds may not imply that a burst is a spatially connected
object.
There is no concept of time independent from the

sequence of opened bonds in the classical IP model.
However, with respect to earthquakes in nature, there are
multiple timescales. Bursts of activity may occur episodi-
cally in time, separated by a period of repose as the system
“recharges” for the next seismicity burst [1]. For a more
general model, we now modify the classical IP model to
allow for bursts that are both spatially and temporally
localized, and in which time increments have a meaning
independent of the temporal development of the bursts. Or
stated in an alternate way, in our modification of the model,
we allow for multiple timescales.
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Constrained Leath invasion percolation.—In the CLIP
model, we combine the idea of growing clusters via the
Leath algorithm, with the constraint that each site can only
be connected to the origin by means of a single pathway of
bonds. We start with the “injection site” as the origin,
although models with multiple injection sites could be
constructed. In this model, we occupy sites in the growing
cluster via Leath events or bursts. We also apply the
constraint that a site can only be connected by a single
path of bonds to the origin, so that multiple connection
paths are not allowed, similar to constraints imposed by the
method in Ref. [14]
Here we consider two timescales, an “injection scale” or

long timescale on which the injections occur, and a “burst
scale” or short (“instantaneous”) timescale on which the
bond-opening events occur. The cluster begins with growth
from the origin on the first long time step.
On a square lattice in d ¼ 2, the four nearest neighbor

sites to the origin are first identified. As in the Leath
algorithm [9], each of these four sites are tested by
generating a uniformly distributed random number on
(0, 1). If the random number is less than an occupation
probability pocc, the site is occupied and the bond between
the origin and that site is opened. Testing and opening of the
bonds is assumed to occur on the short timescale. This step is
regarded as the first burst.
Once the testing is completed on the four nearest

neighbors to the origin on the first long time step, the
model proceeds to the second long time step, during which
the second burst occurs. Two tests are carried out. The first
test demands that the random number be less than pocc, and
the second test demands that an occupied site can only be
connected to the origin by a single path of bonds.
The process is repeated for all later generations of bursts.

The cluster grows by a series of Leath bursts, constrained
by the requirement that a site is only connected to the
origin once. Because the model is fundamentally con-
strained by bond pathways, we expect that the critical value

of occupation probability should be 0.5, the value for bond
percolation in d ¼ 2. This expectation is borne out by
simulations. Once the a burst is completed, one of the sites
in the cluster is then chosen at random as the next growth
site and its neighbors are identified and tested by compar-
ing random numbers to pocc and the process repeats.
An example of such a cluster composed of 5 bursts is

shown in Fig. 1(a) for the value pocc ¼ 0.45. In Fig. 1(b) it
can be seen that there are no open regions in the cluster
network that are totally surrounded by opened bonds and
thus isolated. In the conceptual physical model, all preex-
isting fluid therefore has the possibility of “draining” out of
the medium as bonds are opened. It can be seen that the
bursts, which occur sequentially over the long timescale
characteristic of fluid injection at the origin, are spatially
connected. Each burst is assumed to develop over the short
burst timescale.
In Fig. 2 we show the number-size non-normalized

probability density functions fðSÞ for bursts in models with
two different values of occupation probability, pocc ¼ 0.45
(a) andpocc ¼ 0.497 (b). Figures 2(a) and 2(b) are plotted on
log-log axes, so that scaling, or power law functions will
appear as a straight line. Here number is the number of bursts
and burst size S is the number of occupied sites in the burst.
Note that this plot bins the data prior to fitting the scaling
line, but the data are computed tomachine precision. Quoted
errors in data fits, which are calculated by least squares here
and in Fig. 3, arise from the fit shown.
Both Figs. 2(a) and 2(b) are statistics for calculations with

300 000 bursts. Figure 2(a) has a shorter scaling region,
whose best fit scaling line between 2.0 ≥ log10ðSÞ ≥ 0.25
has a slope of −0.806� 0.053. Figure 2(b), nearer to the
critical occupation probability of pbc ¼ 0.5, has a longer
scaling region. The best fitting scaling line between 3.816 ≥
log10ðSÞ ≥ 0.25 is −:667� 0.013 ≈ −2=3. This latter slope
in Fig. 2(b) has a significance that will become apparent
shortly. We note that problems in fitting earthquake data
have been discussed extensively in Refs. [15,16].

FIG. 1. Example of 5 bursts with associated open bonds. Bursts are shown as separate colors. Yellow star denotes the initial seed.
(a) Bursts sites are color coded, connecting bonds are shown as dark lines. (b) Open bonds only shown as lines.
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The fact that the slope of the scaling line should be more
negative in Fig. 2(a) than Fig. 2(b) is clear. Both plots have
300 000 bursts, and as a pocc → pbc ¼ 0.5, bursts will tend
to grow larger once they are initiated. This fact is borne out
by the data in Fig. 2, as (a) has 2.11 × 106 sites in the
growing cluster, whereas (b) has 45.26 × 106 sites in the
growing cluster. In Fig. 2(b), there are proportionally many
more large clusters relative to the number of small clusters
than in Fig. 2(a). As a result, the magnitude of the scaling
line slope in Fig. 2(a) should be larger than the magnitude
of the scaling line slope in Fig. 2(b).
For naturally occurring earthquakes, the standard in

the literature is to plot the Gutenberg-Richter frequency-
magnitude (or number-magnitude) relation as a non-
normalized survivor distribution or exceedance distribution
for earthquakes greater than a magnitudeM as in Figs. 3(a)
and 3(b). Earthquake magnitude is typically defined
based on the energy release in earthquakes, a quantity that
is characterized by the seismic moment W [17]. More

specifically, the standard definition of moment magnitude
Mw in SI units is

1.5Mw ¼ log10ðWÞ − 9.0; ð1Þ

where

W ¼ μUA: ð2Þ

Here μ is the elastic shear stiffness,U is the displacement on
the earthquake fault, and A is the slipped area on the fault.
We now convert the simulation data shown as the non-

normalized probability density functions in Figs. 2(a) and
2(b) to non-normalized survivor (exceedance) distributions
as shown in Figs. 3(a) and 3(b). Here there is no need to bin
the data. In addition, rather than assuming that each site in a
burst represents an element of burst area, let us assign each
site to represent an element of seismic moment, consistent
with the idea of CLIP as a general graph-theoretical model.

FIG. 2. Non-normalized probability density functions for number of bursts vs burst magnitude size (number of sites in a burst) on log-
log axes for two values of occupation probability. Line slopes as shown. (a) Left, pocc ¼ 0.45. (b) Right, pocc ¼ 0.497.

FIG. 3. Non-normalized survivor (exceedance) distributions for number of bursts vs burst magnitude (defined in the text) on log-log
axes for two values of occupation probability. b-values as shown. (a) Left, pocc ¼ 0.45. (b) Right, pocc ¼ 0.497.
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Analogous to Eq. (1), we define the burst magnitudeMB
by the relation

1.5MB ¼ log10ðSÞ; ð3Þ

where again S is the burst size, or number of occupied sites in
the burst. The results are shown in Figs. 3(a) and 3(b). Here,
the slope of the scaling line on the survivor distribution
plot is typically called the Gutenberg-Richter [1] b-value.
Earthquake number-magnitude scaling relations are empiri-
cally found to be approximately described by the equation

log10ðNÞ ¼ a − bMW; ð4Þ

where a and b are constants. Examples are shown below.
Similar to the results of Fig. 2, it can seen that the b-value

of 1.332� 0.022 in Fig. 3(a) is larger than the b-value of
0.999� 0.005 in Fig. 3(b). Again, this is because the
number of overall sites in the cluster is larger for larger pocc
having the same number of bursts. In Fig. 3(b), which was a
model for which pocc ¼ 0.497 (near pbc ¼ 0.5), the b-value
is very close to b ¼ 1.0. The data in Fig. 3 were fit between
1.552 ≥ MB ≥ 0.25 for Fig. 3(a), and between 1.908 ≥
MB ≥ 0.25 for Fig. 3(b). We note that to verify the b-
values, we also computed them by the maximum likelihood
method and found very similar results [18–20]
More generally, for a sequence of values of pocc, we

find the results shown in Fig. 4. Error bars for the b-values
are shown as well (68% confidence). The short dashed
extension to the red line represents the extrapolation of
the data to the critical value of probability pbc ¼ 0.5. It is
found that the extrapolated b-value is b → 1.002� 0.006
as pocc → pbc ¼ 0.5. As we discuss below, this b-value

is characteristic of values seen in observed earthquake
seismicity.
To show why the limiting value of b in Fig. 4 approaches

b ¼ 1, we write the exceedance distribution Nð>MBÞ for
MB in terms of the probability density function fBðMBÞ as

Nð>MBÞ ¼
Z

∞

MB

fBðM0
BÞdM0

B: ð5Þ

As discussed previously, we see from Fig. 2(b) that as
pocc → pbc ¼ 0.5, the probability density function fðSÞ
asymptotically approaches a power law:

fðSÞ → cS−x as pocc → pbc ¼ 0.5; ð6Þ

where c is a constant and x → 2=3.
Combining Eqs. (3) and (6), we find the probability

density function fBðMBÞ is

fBðMBÞ ¼ fð½SðMBÞ� ¼ c½ð101.5MBÞ�−x → c10−MB

as pocc → pbc ¼ 0.5: ð7Þ

Substituting Eq. (7) into Eq. (5) we finally find that

Nð>MBÞ ¼
Z

∞

MB

fBðM0
BÞdM0

B ¼ clog1010−MB: ð8Þ

From definition (4) and Eq. (8), we therefore see that b and
a → log10 ðc log 10Þ as the occupation probability pocc →
pbc ¼ 0.5.
Earthquake data.—To compare with observed earth-

quake data, we show the b-value data for multiple sites
and geologic regimes in Table I, for the seismicity data
in circular regions. Data are from the U.S. Geological
Survey. Tectonic regimes (T) are generally characterized by
b-values close to b ∼ 1, consistent with nearly critical
behavior pocc ∼ 0.5. In these locations, very large earth-
quakes (large bursts) are possible and often observed. In
nature, values b < 1 are unusual, and are often found to be
due to observational problems of detecting small earth-
quakes [1]. Another factor may be uneven coverage of
seismometers, such as in areas that combine land, where the
coverage is usually good, and oceanic areas, where the
coverage is often less reliable.
Volcanic regimes (V) are generally characterized by

somewhat higher noncritical probabilities and b-values
near b ∼ 1.1, since larger earthquakes are not often
observed on the smaller fault systems present in volcanic
edifices. Injection and fracking locations (I/F) have yet
smaller fault systems, and consequently smaller earth-
quakes, with higher b-values near b ∼ 1.2–1.5. But see
also Refs. [21,22] for a discussion.
Discussion.—The CLIP model extends the original IP

model. In earthquakes, activity is often observed to begin in
a location after a period of quiescence, then progresses

FIG. 4. b-value vs occupation probability pocc for CLIP bursts.
Data were fit for the range of values 0.45 ≤ pocc ≤ 0.497.
Extrapolation to the critical value pocc ¼ pbc ¼ 0.5 indicates
that the b-value at criticality for the number-magnitude relation is
expected to be b ¼ 1.002� 0.006.
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in a series of burstlike events to cluster in space and
time [23–31]. These bursts include foreshock-mainshock-
aftershock sequences, as well as swarms [32].
Previous papers have developed simple models for

earthquakes based on percolation [5] and slider blocks
[33,34]. In the mean field versions of these models, the
frequency-size exponent τ − 1 is generally found to have
the value τ − 1 ¼ 1.5 [34], to be compared to Fig. 2.
Interpreting a connected site as an element of moment
release as we have assumed in this paper, one would find
b ¼ 1.5, compared to the observed value near b ∼ 1.
On the other hand, using a slider block model with

damage, Ref. [7] found that models could be developed in
which b ∼ 1.0. In both of these other models, τ is a constant
irrespective of model parameters. As another example, the
SOC model of Ref. [35] is characterized by an area-scaling
exponent of τ − 1 ∼ −1, so it too would have b ∼ 1.
However, for all these models, the area-scaling exponents
are constant, and therefore the b-value is constant.
The CLIP model, on the other hand, has a variable b-

value. As the CLIP occupation probability approaches the
critical value pocc → pbc ¼ 0.5, larger bursts become pro-
gressively easier to generate, leading to a lower b-value that
approaches the observed value in the limit.
We note that other scaling laws characteristic of

earthquakes can be obtained from the CLIP model. For
example, we find that the fractal dimension of the clusters
Df ¼ 1.89� 0.021, in good agreement with the observa-
tionally measured value of Df ¼ 1.9 [36].
As described in many previous publications of long

standing, the mobilization of pore fluids is thought to be
intimately connected to the physics of earthquakes [37–45],
providing possible justification for the CLIP model. The
model will also allow earthquake seismicity data to be
interpreted in terms of current values of burst probabilities
pocc [46,47].
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