
 

Predicting the Speed of Epidemics Spreading in Networks

Sam Moore* and Tim Rogers †

Centre for Networks and Collective Behaviour, Department of Mathematical Sciences, University of Bath,
Bath, England BA2 7AY, United Kingdom

(Received 13 June 2019; revised manuscript received 23 October 2019; accepted 9 January 2020; published 12 February 2020)

Global transport and communication networks enable information, ideas, and infectious diseases to now
spread at speeds far beyond what has historically been possible. To effectively monitor, design, or intervene
in such epidemic-like processes, there is a need to predict the speed of a particular contagion in a particular
network, and to distinguish between nodes that are more likely to become infected sooner or later during an
outbreak. Here, we study these quantities using a message-passing approach to derive simple and effective
predictions that are validated against epidemic simulations on a variety of real-world networks with good
agreement. In addition to individualized predictions for different nodes, we find an overall sudden transition
from low density to almost full network saturation as the contagion progresses in time. Our theory is
developed and explained in the setting of simple contagions on treelike networks, butwe are also able to show
how the method extends remarkably well to complex contagions and highly clustered networks.
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It took more than nine years for the Black Death to
spread across Europe. Progress of this devastating outbreak
of bubonic plague was limited by 14th century travel
networks to an average daily dispersion of approximately
1.5 km [1]. In frightening contrast, the recent Zika outbreak
in South America was found to spread with an average
daily dispersion of 42 km, rising as high as 634 km in the
most densely populated parts of Brazil [2]. This extraor-
dinary difference is indicative of a mobile society that is no
longer rigidly bound by spatial structure, making the
relevant notion of distance network based rather than
geographic. Similarly, in the highly connected domain of
social media, the spread of concepts, memes, and hashtags
can be explosive. One recent empirical study of the
dynamics of online rumour cascades—often reaching tens
of thousands of users in a matter of days—made the
worrying finding that false information spreads faster than
true [3]. It takes little imagination to see how an under-
standing of propagation speeds in modern networks would
have, in the digital case, great commercial and political
benefit and, in the physical case, be invaluable in planning
outbreak prevention, monitoring, and response.
The field of network epidemiology [4–7] has developed

a wide spectrum of techniques for the analysis of spreading
processes. One approach to the problem of spreading speed
is through numerical simulations (see, e.g., [8]), which
yield useful results on small scales but, for increasingly
large complex networks, may prove slow and impractical.
Alternative approximations have been made by considering
only the most probable path between a given target node
and the source [9]. It is known that this shortest-path
approach can significantly overestimate the infection
arrival times [10], but to take into account all possible

paths would soon be infeasible because their numbers
typically grow exponentially with the number of vertices in
the network. One promising idea is a conjectured con-
nection between centrality measures and infection arrival
time [11], which so far has only been tested numerically.
Although global networks of interest are highly con-

nected, they are also typically sparse in the sense that
individuals usually interact with a number of others that is
very small relative to the total population size. Exploitation
of this sparse network structure has been a key tool in
network epidemiology: in particular, via the message-
passing approach pioneered in [12]. This technique has
allowed for efficient characterization of the epidemic
(percolation) threshold [13,14], and it gave rise to the
new notion of non-backtracking centrality [15]. In [16,17],
a message-passing approach was used to make individu-
alized predictions for node responses to spreading proc-
esses, giving a physical interpretation of non-backtracking
centrality as the probability for a node to appear in the
percolating cluster. None of these works has yet addressed
the important questions of how fast an epidemic will spread
in a given network and which nodes may fall victim first.
Here, we seek to assess the full time dependence of an

epidemic outbreak in order to characterize the speed of
spread in a given network by calculating the mean delay in
infection between nodes at different graph distances from
the source. Technically, we achieve this through a saddle-
point analysis of the left tail of the distribution of time to
infection expressed via the message-passing equations.
This method enables us to find the overall speed of an
infection in a network and to show that the arrival time at a
node is accurately predicted by the logarithm of its non-
backtracking centrality.
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Our theoretical predictions for both spreading speed and
arrival times show excellent agreement with numerical
simulations performed on real-world networks, even in the
case of highly clustered contact networks with heavy-tailed
degree distributions. Remarkably, we show that the method
can also be extended to complex threshold models of
contagions in which a node must be exposed to multiple
infective neighbors before acquiring the contagion itself.
We finish by observing that the time for the infection to
spread through the bulk of the network is independent of
network size, implying an almost instantaneous jump from
a low to a high density of infection when time is properly
scaled; a property that we show to be common to time-
ordered percolation in general.
Speed of spread.—We begin by considering a simple

susceptible-infected contagion spreading on a sparse net-
work starting from a single infected node (details of the
extension to other models are found in the Supplemental
Material [18]). When node i becomes infectious, it trans-
mits the infection to a neighbor j after a delay Xi→j: a
random variable drawn from a distribution with density
fðxÞ, independent from any other event. The choice of an
exponential distribution for f would correspond to Markov
disease dynamics, although it has been shown that real-
world contagion dynamics differ substantially from this
simple case [19–22]; hence, we study general distributions
of the transmission time.
Write Tn

i for the length of the shortest (temporal) path to
a node at distance n from i, and Tn

i→j for the shortest such
path for which the first step is to node j. It follows that
Tn
i ¼ minj∈∂i Tn

i→j, where ∂i denotes the set of neighbors
of i. More generally, Tn

i→j decomposes as

Tn
i→j ¼ Xi→j þ min

k∈∂jniT
n−1
j→k: ð1Þ

Writing Fn
i→jðtÞ for the probability that Tn

i→j is less than t,
we arrive at the message-passing equation

Fn
i→jðtÞ ¼

Z
t

0

fðxÞ
�
1 −

Y
k∈∂jni

½1 − Fn−1
j→kðt − xÞ�

�
dx: ð2Þ

In writing the above, we have assumed independence
between the variables fTn−1

j→kg; although this technically
only holds for tree graphs, we will see that the approxi-
mation is effective for a broad class of real-world networks.
Equation (2) represents a nested hierarchy of expressions

that could in principle be solved numerically for a given
network, infection, and source node. However, this process
is computationally intensive, and the results are not gen-
eralizable. We will pursue a different path and investigate
the structure of the dynamics described by Eq. (2) to reveal
useful general insights.
At first glance, it appears that the spreading process

depends in a complicated way on the precise layout of the
network; however, we find that the system possesses a

regularity that emerges after a few iterations. In a network
of N ≫ 1 nodes, for 1 ≪ n ≪ N, we observe the con-
vergence Tn

i =n → τ for some constant τ, describing the
delay between spreading n − 1 steps from the source to n.
In this sense, 1=τ can be interpreted as the speed of
spreading in the network. This effect is illustrated in the
left panels of Fig. 1, showing the convergence and
reduction of variance in simulated histograms of Tn

i =n
for different source nodes i as n grows.
To compute the characteristic delay τ, we examine the

left tails of Fn
i→j for large n. Our rationale for this approach

is that, as illustrated in Fig. 1, the offset is the same across
the whole distribution; and we will show that the left tails
are amenable to a linear analysis. For t ≪ nτ, we linearize
Eq, (2) to obtain

Fn
i→jðtÞ ≈

Z
t

0

fðxÞ
X
k∈∂jni

Fn−1
j→kðt − xÞdx: ð3Þ

This problem is mathematically analogous to that of
front propagation, and we therefore follow the standard
method described in [23]. The trivial solution F0ðtÞ≡ 0 is
linearly unstable with increasing n, and the dominant rate
of growth will determine τ. The two-sided Laplace trans-
form of Eq. (3) reads

F̃n
i→jðkÞ ¼ f̃ðkÞ

X
l∈∂jni

F̃n−1
j→lðkÞ; ð4Þ

where f̃ðkÞ ¼ R
e−kxfðxÞdx is the Laplace transform of f.

Viewing F̃ as a vector with entries indexed by directed
edges, Eq. (4) describes an iterative process of multiplying
by a matrix that encodes the entries of the sum, and then by
the scalar f̃ðkÞ. Thus, for large n, we can expect
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FIG. 1. Left panels: simulation of distribution of scaled time
Tn
i =n for an epidemic to reach distance n from a source node i

chosen to have degree 1 (dark) or degree 3 (pale); as n → ∞,
these distributions will converge to delta functions at some value
τ. Right panel: simulation of Fn

i ðtÞ for time to reach distance n
from a source node i chosen to have degree 1, showing
convergence to a standard form with a fixed offset τ. In both
cases, node-to-node transmission times are standard exponentials
and the network is an Erdős-Rényi graph with mean degree 3 on
N ¼ 104 nodes.
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F̃n
i→jðkÞ ∝ vi→je−ωðkÞn; ð5Þ

where the coefficient vi→j contains the edge-specific infor-
mation, and the function ωðkÞ determines the overall
exponential growth rate. Substituting this ansatz into
Eq. (4), we find v ¼ f̃ðkÞeωðkÞBv, where B is the non-
backtracking matrix [15]. This is an eigenvalue equation for
Bwith a non-negative eigenvector v; according to the Perron-
Frobenius theorem, for a connected network, there is a
unique maximum eigenvalue λ, which is real and positive.
Thus, the growth rate is found asωðkÞ ¼ − log½λf̃ðkÞ�. Note
that 1=λ ¼ ρc is the percolation threshold of the network
[13,16,17].
Examining the inverse transform at time tþ nτ, one

finds (full details are in the Supplemental Material [18])
physically meaningful results in the limit of large n only
when

τ ¼ max
k

�
1

k
½log ρc − log f̃ðkÞ�

�
: ð6Þ

This is our first main result, showing how the speed of
spread is determined by the network via its percolation
threshold ρc and by the infection itself via the Laplace
transform of its transmission time distribution. It is impor-
tant to note that this result is derived from making a treelike
assumption for the underlying network, and our calculation
holds in the limit of the large distance from the source. In
this sense, it describes the fastest spreading regime: the
mid-outbreak phase of exponential growth.
In practical applications, however, most networks of

interest are not treelike; and finite size effects mean the
infection is unlikely to be able fully accelerate to the stable
regime we have calculated. Nonetheless, our result still
provides high-quality predictions. Figure 2 demonstrates
the effectiveness of this measure on a variety of real-world
networks from the Stanford Large Network Dataset
Collection (SNAP) [24]: many with heavy-tailed degree
distributions and high clustering; Table S. I in the
Supplemental Material [18] gives full details. To further
test the reliance of our method on the treelike assumption
made in writing Eq. (2), we have simulated spreading
processes in Watts-Strogatz random graphs with varying
rewiring probabilities. Included in Fig. 2, the results for
these networks show that our method performs better
for higher rewiring probability, but is still very successful
for highly clustered networks with low rewiring.
As well as the network, our measure of speed also

depends on properties of the infection. One might expect
the time delay τ to be scaled by the mean delay time; but,
beyond this, it is difficult to discern from Eq. (6) how the
shape of the distribution should affect the global speed of
spread. To explore this aspect, we show in Fig. 3 the
observed and predicted spreading speeds for Weibull
distributed delays, interpolating between heavy tailed
and Dirac distributed. Crucially, we find that the shape

of the distribution of the transmission time has a substantial
effect on the speed of spread in a network. If there is mass
near zero, then delays are minimal due to the presence of
extremely fast transmission routes. Conversely, if the
transmission time is close to deterministic, then spreading
is determined entirely by graph distance, meaning τ ≈ 1. In
the Supplemental Material [18], we prove that τ is always
less than the mean delay time, with equality only for Dirac-
delta distributions.
The time taken to receive the infection.—As well as

predicting the overall spreading speed, our approach also
allows us to rank nodes in the network by their expected
time to become infected. Write Δij for the offset in
infection time between nodes i and j, which for large n
should satisfy Fn

i ðnτÞ ¼ Fn
j ðnτ þ ΔijÞ. Inverting the trans-

form in Eq. (5) for large n by steepest descent and
comparing with the above (details in the Supplemental
Material [18]), we find that

0 0.02 0.04 0.06
0

0.01

0.02

FIG. 2. Predicted and observed values of spreading delay τ for a
unit rate exponential infection spreading on a variety of social and
communication networks [25–32] with different percolation
thresholds ρc. Predicted values (red circles) are calculated using
Eq. (6). Observed values (blue dots) show the average over 103

simulations with random source nodes. Stars show results for
Watts-Strogatz random graphs on 104 nodes with degree 30 and
rewiring probabilities of 0.1, 0.5, and 1. Full details of all
simulations are given in the Supplemental Material [18].
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FIG. 3. Simulated (blue marked line) and predicted (red dashed
line) spreading delays τ for infections with Weibull delay times
with varying shape parameters κ and a fixed mean 1 (example
delay distributions shown in insets). Simulations follow the same
method as Fig. 2, averaged over 100 samples on an Erdős-Rényi
graph of 104 nodes and a mean degree 3.
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Δij ¼
1

k⋆ log
�
ci
cj

�
þOð1=nÞ; ð7Þ

where k⋆ ¼ argmaxkfωðkÞ=kg, and

ci ¼
X
j∈∂i

vi→j

is the non-backtracking centrality of node i. This log-linear
relationship is demonstrated numerically in Fig. 4 for nodes
in a selection of networks from the SNAP. This result is
important because it resolves the open question of exactly
how network centrality measures may be used to estimate
epidemic arrival time, and it provides a robust theoretical
justification for the use of non-backtracking centrality (see
Supplemental Material [18] for a comparison to other
centrality measures).
Going further, many realistic models of network con-

tagion require the number of infected neighbors of a node
to reach some threshold θ ≥ 1 before the infection is passed
on. In the Supplemental Material [18], we show how a

variation of our theory, building on results from [33],
extends to these complex contagion models by considering
the θ-shortest temporal paths from a node. Remarkably, the
log-linear relationship derived above continues to hold in
this more complex setting, as illustrated in Fig. 4. In
addition to this visual demonstration, we present in Table I
the Pearson correlation coefficients between log-non-back-
tracking centrality and the infection arrival time for various
disease dynamics in various networks. These results show
that our theory, which is physically justified and cheap to
compute, provides excellent predictions of the relative
delay between nodes in a wide variety of spreading
processes.
Because the non-backtracking centrality of a node is

mainly a property of its local environment, the result of
Eq. (7) means that we should expect the vast majority of
infections to occur during a time window for which the
duration is independent of the total size of the network.
However, it can be shown that, in a network of size N, the
time needed for an infection to take hold grows like
logðNÞ=ðλ − 1Þ. Taken together, these results imply that,
on the timescale of the spreading contagion in a large
network, one will observe an almost instantaneous jump
between a vanishing fraction of nodes infected to almost
complete infection. We illustrate this result in Fig. 5 for
Erdős-Rényi graphs of increasing size, and we provide
precise theoretical derivations in the Supplemental Material
[18], where we show that this property holds for models of
temporal percolation in both sparse and dense networks.
Discussion.—We have presented here a theoretical

framework for determining the speed of contagion proc-
esses in large networks. Analyzing the spreading front of
the contagion probability, we derived Eq. (6), showing how
network topology and infection dynamics affect speed via,
respectively, the network percolation threshold and the
Laplace transform of the transmission time law. Our theory
also reveals in Eq. (7) a surprisingly simple relationship
between contagion arrival times and the non-backtracking
centrality of nodes. Finally, we have observed that these
results imply that the spreading process in large networks

(a) (b) (c) (d) (e) (f) (g)

FIG. 4. Non-backtracking centrality predicts time to infection.
Left: scatter plot of centrality and average arrival time for nodes in
a selection of networks using a contagion with Weibull (κ ¼ 10)
infection times. Right: results for simulations of complex con-
tagions with threshold θ in an Erdős-Rényi graph with 104 nodes
and a mean degree of six. Key: (a) an interpersonal contact
network in an American high school [32], (b) “Epinions” social
media, (c) “Deezer” Romanian social network [25], (d) an Erdős-
Rényi graph with N ¼ 105 nodes, (e) θ ¼ 1, (f) θ ¼ 2, and
(g) θ ¼ 3.

TABLE I. Correlation coefficient between contagion arrival time (measured from 103 simulated spreading processes with random
sources) and the logarithm of non-backtracking centrality, for various networks. Values close to theoretical limit −1 correlation imply
strong prediction quality.

Exponential Weibull (κ ¼ 10)

Network name Simple 2-core 3-core Simple 2-core

Erdős-Rényi −0.9487 −0.9693 −0.9502 −0.9721 −0.9691
Epinions [31] −0.8765 −0.7769 −0.7428 −0.9946 −0.8661
Deezer Croatia [25] −0.8265 −0.8094 −0.8088 −0.9049 −0.8697
Facebook Artists [25] −0.7943 −0.7481 −0.7322 −0.9586 −0.8778
ArXiv Condensed Matter [28] −0.8712 −0.7999 −0.7939 −0.9513 −0.8296
Facebook Companies [25] −0.8439 −0.7203 −0.6685 −0.9138 −0.7606
School contact [32] −0.7667 −0.7532 −0.7199 −0.9661 −0.9371
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undergoes an almost instantaneous expansion in their reach
when time is properly scaled.
The setting for our theoretical derivation has been that of

simple epidemics spreading on large treelike networks.
However, we have shown that the key results hold
remarkably well for a broad class of networks, including
those with high clustering, and for contagion models
including non-Markov dynamics and complex threshold
models. Further development of rigorous mathematical
results for these models is a challenging problem worthy
of considerable future efforts. Excitingly, our results
suggest possible routes for the development of monitoring
and intervention protocols for real-world contagions using
message-passing methods. Progress in this direction may
require the consideration of even more detailed models
including temporally varying and multilayered networks:
both promising avenues for future research.
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FIG. 5. Fractional size of the cluster of infected node as a
function of time in various Erdős-Rényi graphs of different sizes
N and mean degree c, averaged over 100 simulations from
random seed nodes, with standard exponential infection times.
The left panel shows real time, and the right has rescaled time
showing convergence to a step function in limit N → ∞,
implying “instantaneous” spread to the bulk of the network.
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