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The toughening of sparse elastic networks, such as hydrogels, foams, or meshes against fracture is one of
the most important problems in materials science. However, the principles of toughening have not yet been
established despite urgent engineering requirements and several efforts made by materials scientists. Here
we address the above-mentioned problem by focusing on the topology of a network. We perform fracture
experiments for two-dimensional periodic lattices fabricated from rubber strings and connecters with well-
defined topological structures. We find that systematic increase in the largest coordination number while
maintaining the average coordination number (¼ 4) as constant leads to significant improvement in
toughness. We reproduce the observed toughening behavior through numerical simulations and confirm
that the stress concentration in the vicinity of a crack tip can be controlled by the topology of the network.
This provides a new strategy for creating tough sparse elastic networks, especially hydrogels.
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Sparse elastic networks are two- or three-dimensional
structures composed of slender elastic bodies [1–8], such as
chains, rods, or plates connected via nodes. Different
examples with various mesh sizes can be found in numer-
ous systems, such as low density amorphous ice [3],
cytoskeletal networks [4], foams [5], knitted fabric [6],
spider webs [7], and trusses [8].
Owing to their sparse structures, these networks provide

important advantages, such as light weight, flexibility,
permeability, and optical visibility [9]. However, there is
a major drawback that must be overcome in many cases,
i.e., brittleness under mechanical stresses. One typical
example is hydrogels [10–18]. A hydrogel is a cross-linked
polymer containing a large amount of water. This combi-
nation provides various kinds of unique properties and
strong affinity to biological environments [13]. Despite
these characteristics, the application of hydrogels to bio-
materials has been extremely limited because of their brittle
nature [14,15].
In the last two decades, novel types of hydrogels with

improved toughness have been developed owing to the
extensive efforts of materials scientists [10–12,16]. For
example, double-network hydrogels [10] introduce struc-
tural heterogeneity in polymer networks, while slide-ring
hydrogels [11] and tetra-polyethylene glycol hydrogels
[12] are designed to reduce or relax stress concentration.
These completely opposite strategies are known to con-
tribute to toughening and motivate further developments
[17–19]. However, the fundamental question of whether
there is another novel method of toughening hydrogels
remains to be answered.
The toughening of sparse elastic networks has been

studied from other aspects in addition to hydrogels. The

statistical properties of random elastic networks have been
discussed by numerous researchers [20–22]. Recently,
motivated by the study of the contact networks of granular
systems [23], the effects of the average coordination
number on the rigidity and failure of elastic heterogeneous
networks have been discussed [24]. According to the
results, as the average coordination number decreases
and approaches a threshold (¼ 4), the width of the fracture
process zone increases and the network toughens. This new
kind of mechanical approach with a topological point of
view [25–27] is currently expected as a promising strategy
for developing novel mechanical properties and improving
toughness. However, there are still only a few studies that
have focused on the topology and fracture of periodic
networks. These studies are considered to be important in
designing and optimizing networks in a systematic manner.
In this Letter, we first investigate the effects of link

length heterogeneity on toughness and then introduce a
new aspect into sparse elastic networks, which is the
topology of periodic lattices.
The schematic of the top view of our experimental

system is depicted in Fig. 1(a). A sample of a sparse elastic
network is pulled horizontally on a flat and slippery table
by driving the top metallic bar at V ¼ 6 mm=s until the
sample breaks or the stroke reaches the maximum. The
network is composed of links and nodes; a link, illustrated
in Fig. 1(b), is fabricated from silicone rubber strings
(diameter D ¼ 2 mm, Young’s modulus E ¼ 970 KPa,
RBWS2, Misumi), connecters, and cable clips. The net-
work is assembled by coupling the connecters with bolts.
To precisely control the force at break of each link, two
cable clips are located at the center, where either of two
rubber strings are pulled out at Fbreak ¼ 5.5� 0.1 N. The
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natural length and spring constant for the standard link are
L ¼ 68 mm (LR ¼ 30 mm for rigid parts and LS ¼ 38 mm
for strings) and k ¼ 80 N=m, respectively.
The sample is fixed with a metallic bar at the bottom end,

and a precrack is introduced by disconnecting links over a
certain length in advance. It is well known that the system
with a crack becomes the most unstable in the stress-
controlled loading condition [28]. However, this condition
is not actually realized in the displacement-controlled
testing machines. To test our samples under a severe
condition, we intentionally reduce machine stiffness by
connecting the softest (longest) possible strings (silicone
rubber sponge strings, RBWSS3, Misumi, diameter
D ¼ 3 mm, length L ¼ 700 mm, and spring constant k ¼
7.1 N/m) onto the sample at another end. Tensile displace-
ment is represented by the stroke of the top metallic bar,
and tensile force is measured using a load cell connected to
the bottom bar at a sampling rate of 100 Hz. Fracture
behavior is recorded by a CCD camera hung on the ceiling
at 20 fps.
First, we study the effects of link length heterogeneity on

toughness. Square lattice samples with different degrees of
heterogeneity are prepared by randomly allocating short
and long links, where one half of the links has length
Lshort ¼ L0ð1 − δÞ and the other half has Llong ¼
L0ð1þ δÞ; thus, the link lengths are all different from L0 ¼
68 mm but the average link length is L0. The system size is
Nx ¼ 9 and Ny ¼ 5 in the directions perpendicular and
parallel to tensile force, respectively. Here, four different
samples with δ ¼ 0, 0.2, 0.3, and 0.4, and with the same
precrack length Ncrack ¼ 4, are examined. Figure 2(a)
shows the force-displacement curves for the samples. It
is clearly observed that all samples exhibit approximately
the same elasticity at small strains (up to displacement
d ¼ 0.35 m) but show completely different behavior at
large strains. For samples with δ ¼ 0 and 0.2, once
a crack starts to propagate, it does not stop in the middle
but ruptures the entire sample at around d ¼ 0.5 m. In
contrast, for samples with δ ¼ 0.3 and 0.4, a precursory
break occurs at around d ¼ 0.4 m, the samples continue to

elongate, and complete rupture occurs at larger displace-
ments (d ∼ 0.6 m).
We define two types of fracture energies, Eini and Efin, to

characterize fracture behavior. They are calculated by
integrating the force-displacement curves until the initial
break and final rupture, respectively. Figure 2(b) shows the
fracture energies for four different samples, where the data
for four trials are used to calculate the average values and
the standard deviations for each type of sample. It is clearly
seen that the variation in Eini increases with δ. On the
contrary, the variation in Efin does not change significantly
with δ and its average value increases for the samples with
larger δ. This can be explained by the following mecha-
nisms: while early break behavior is sensitive to the initial
configuration of shorter or longer links and can fluctuate,
the final rupture of the samples can be determined by the
propagation of the main crack in “effective” media, where
the early break of links efficiently dissipates stored
elastic energy, works as sacrificial bonds, and contri-
butes to delaying the propagation of the main crack
[29,30]. Figure 2(c) shows the corresponding snapshots.
Nonuniform link length distributions and highly hetero-
geneous rupture behavior are observed for the samples with
large degrees of heterogeneity.
Next, we study the effects of network topology on

toughness. We start from a regular square lattice as a trivial
topological structure. From Maxwell’s relation of structural
rigidity, a square lattice without the bending stiffness
of a link is known to exhibit anomalous behavior, such
as vanishing shear elasticity at small strains [31].
Nevertheless, we adopt the square lattice as a benchmark
because it is sufficiently simple, frequently seen as meshes
or nets in daily life, and appropriate for observing the
difference in topology and fracture behavior, as discussed
later. Here, we create samples with different topological

FIG. 1. (a) Top view of our experimental setup and (b) a link
used in our sample.

FIG. 2. Fracture behavior for samples with different degrees of
link length heterogeneity δ. (a) Force-displacement curves,
(b) fracture energies at initial break and final rupture, and
(c) snapshots of the deformations, where numbers (i)–(vi) corre-
spond to those shown in Fig. 2(a).
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structures by conserving the total number of nodes and
links, where the average coordination number is the same
for all samples. To simplify the discussion, we restrict
ourselves to a periodic structure with a unit cell and locally
change the coordination numbers within the cell. As a
result, we systematically obtain a lattice with coordination
numbers of 3 and 5 (named 3-5 lattice) and a lattice with
coordination numbers of 2 and 6 (named 2-6 lattice), other
than the square lattice. The system size is Nx ¼ 12,
Ny ¼ 7, and Ncrack ¼ 4. It is important to note that only
one link exists at the crack tip to draw fair comparisons
among different networks. However, differences exist in the
total link length or weight; the total link length for the 3-5
and 2-6 lattices are 14% and 21% larger, respectively, than
that of the square lattice. As is complemented in the
Supplemental Material [32], they do not dominate the
fracture behavior.
Figure 3(a) shows our experimental results. The samples

with a larger difference in the local coordination number
are more elongated, while the elasticity at small strains
remains unchanged. Accordingly, as shown in Fig. 3(b),
Efin increases with the difference in the local coordination
number. Surprisingly, Eini also increases with the difference
in the local coordination number. This suggests that the
sparse elastic network can be toughened, not by introduc-
ing sacrificial bonds [29] or creating completely uniform
[12] or relaxed structures [11], but by controlling the
topology of the network.
We perform numerical simulations to investigate the

mechanisms of the experimentally observed behavior. We
model a node as a point mass m and a link as a linear
spring with force at break Fbreak. The following equations
of motion are numerically integrated with the forward
difference method:

m
d2u⃗i
dt2

¼
X

j

�
kijðlij − l0;ijÞ

u⃗j − u⃗i
lij

þ η

�
du⃗j
dt

−
du⃗i
dt

��
;

ð1Þ

where u⃗i is the position vector of the ith node, and lij ¼
ju⃗j − u⃗ij and l0;ij are the link lengths between nodes i and j
with and without force, respectively. kij ¼ k0lref=l0;ij is the
spring constant (k0 being the constant for a reference
natural length lref ), and η is the viscosity for numerical
damping. The sum is considered for all links connected to
the ith node. In our simulations, we setm ¼ 1, lref ¼ 1, and
l0 ¼ 1 for the vertical and horizontal links and ¼ ffiffiffi

2
p

for the oblique links. In addition, k0 ¼ 1, η ¼ 0.2, and
Fbreak ¼ 0.3. We apply the force-free boundary condition
on the left and right edges, and the zero displacement at the
bottom end, except the precrack region (at Ncrack points).
Moreover, at each node at the top end, we apply linearly
increasing tensile force FextðtÞ ¼ _Ft (where loading rate
_F ¼ 2 × 10−5) and zero displacement in the vertical and
horizontal directions, respectively. As discussed in the
Supplemental Material [32], the simulation condition is
considered to be quasistatic except for larger square lattice
samples with longer cracks [see also Fig. 5(a)].
Figure 4 shows the numerical results for the square and

2-6 lattices, whereNx ¼ 21,Ny ¼ 11, andNcrack ¼ 5. Note
that there is only one link at the crack tip in both cases,
similar to experiments. Figures 4(a) and 4(b) are the
snapshots just before the initial break. It is clearly seen
that the tensile force is highly localized in the square lattice,
while it is widely distributed in the 2-6 lattice. Figures 4(c)
and 4(d) show the normalized vertical forces of the bottom
nodes Fy;y¼0=Fbreak, as a function of the horizontal distance

FIG. 3. Fracture behavior of samples with different topological
structures. (a) Force-displacement curves, (b) fracture energies at
initial and final rupture, and (c) snapshots of the deformations,
where numbers (i)–(vi) correspond to those shown in Fig. 3(a).

FIG. 4. Numerical results. Snapshots of the deformations just
before the initial break for (a) square and (b) 2-6 lattices.
Normalized vertical force distributions at three different external
force levels as a function of the horizontal distance from the crack
tip, obtained for (c) square and (d) 2-6 lattices.
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from the crack tipDð¼ X − Ncrack þ 1Þ. The figures clearly
show that, in the square lattice, the normalized force
becomes the largest at the crack tip and decreases and
approaches the external force level, Fext=Fbreak, as D
increases. The asymptotic behavior can be described by
Fy;y¼0ðDÞ=Fbreak ∼D−1.5 for the three curves. In contrast,
in the 2-6 lattice, the maximum force is not at the crack tip
but at the next point. This is not surprising because there
are one vertical and two oblique links connected to that
node and the total forces supported by these links are
calculated as tensile force. Furthermore, the overall trend
(envelope) can be characterized by a power law with a
significantly smaller exponent than that for the square
lattice, Fy;y¼0ðDÞ=Fbreak ∼D−0.3, regardless of the external
force level. The possible mechanism might be that nodes
with larger coordination numbers create new “bypassing”
routes, which essentially differs from that in double-net-
work hydrogels [29] and in sacrificial bonds and hidden
length [33]; it works even without a microscopic precur-
sory break.
Finally, we discuss the relationship between precrack

length Ncrack and fracture strength Fext=Fbreak, which is
represented by the normalized external force at initial
break. This corresponds to the inverse of the stress
concentration coefficient [28]. We focus only on the initial
break to discuss the effects of stress concentration. In
these sets of simulations, four different system sizes
are examined to study the finite size effects, i.e.,
ðNx; NyÞ ¼ ð81; 41Þ; ð61; 31Þ; ð41; 21Þ, and (21,11). The
numerical results obtained from different topological struc-
tures are shown in Fig. 5. In the case of the square lattice, all
curves almost collapse into one curve, which is described as

Fext=Fbreak ∼ N−0.7
crackN

0
x: ð2Þ

This implies that fracture strength depends on crack length,
but not on the system size. Note that fracture strength drops
abruptly at Ncrack ≈ 20 for larger samples (Nx ¼ 81 and 61)
due to shock fracture, which can be prevented by decreas-
ing the loading rate.
On the contrary, in the 2-6 lattice, fracture strength

depends on the system size and exhibits damped oscillatory
behavior with the increase in Ncrack. This oscillation can be
simply understood; there is only one link attached when
Ncrack is odd (yielding smaller strength) and three links
when Ncrack is even (larger values). Then, we attempt to
obtain master curves. For this purpose, we divide the data
into two groups, odd and even, and then normalize the
crack length based on system size Nx and strength based on
N−0.4

x . Our trial results are shown in Fig. 5(b). We can
clearly see that the curves collapse into two curves for odd
and even crack lengths, regardless of the system size. Based
on this, we obtain scaling formulas

Fext=Fbreak ∼ N−0.4
x fðNcrack=NxÞ; ð3Þ

where fðxÞ is a universal function that behaves irrespective
of even or odd Ncrack as fðxÞ ∼ x−0.3 for x < xc and ∼x−1.4
for x > xc. xcð≈0.3 and 0.2 for odd and even crack lengths,
respectively) denotes the flexion point of the normalized
curve. We compare the fracture strength between the square
and 2-6 lattices by extrapolating the system size in the
quasistatic loading limit [i.e., excluding the shock fracture
shown in Fig. 5(a)]. As the ratio of strength between the
two lattices becomes the largest at Ncrack=Nx ¼ xc, the
maximum ratio can be calculated using Eqs. (2) and (3),
Fext;2−6=Fext;square ∼ N0.3

x . This suggests that the 2-6 lattice
becomes tougher than the square lattice as the system size
increases.
In the final part of our discussion, we point out a few

important features of the 2-6 lattice. First, fracture strength
is larger for evenNcrack compared to odd Ncrack when Ncrack
is considerably smaller than Nx. This is because a larger
number of links are connected to the bottom, as discussed
previously and as evident from the comparison between the
samples with Ncrack ¼ 5 [Fig. 4(b)] and 6 [Fig. 5(c)].
Second, the strengths for Ncrack ¼ 9 and 10 are almost
the same. This can be understood by observing the snap-
shots; in the case of odd Ncrack [Fig. 5(d)], the maximum
elongation is not of the vertical link at the crack tip but the
oblique link connected at the next node, which is similar to
the case for even Ncrack [Fig. 5(e)]. On the contrary, the
mechanisms for the flexion of the curves are not so clear.
Further investigation is required.
We studied the relationship between network structure

and fracture behavior experimentally and numerically. We
found that link length heterogeneity contributes to the
introduction of sacrificial bonds in the sparse elastic net-
work and delays the final rupture. We also found that the
increase in coordination number difference decreases stress
concentration and results in significant toughening. These
results suggest a potential possibility of topological design

FIG. 5. (a) Crack length-normalized fracture strength curves for
square and 2-6 lattices with various system sizes. (b) Master
curves obtained for 2-6 lattices. Snapshots of the deformations for
(c) Ncrack ¼ 6, (d) 9, and (e) 10.
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for tough elastic networks. However, further work remains
to be done: for example, the optimization of the network
structure, the combination of topology and link length
variations, theoretical description, and extension to three-
dimensional structures. These topics will be studied in the
future.
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