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The rotational diffusive motion of a self-propelled, attractive spherical colloid immersed in a solution of
self-avoiding polymers is studied by mesoscale hydrodynamic simulations. A drastic enhancement of the
rotational diffusion by more than an order of magnitude in the presence of activity is obtained. The
amplification is a consequence of two effects, a decrease of the amount of adsorbed polymers by active
motion and an asymmetric encounter with polymers on the squirmer surface, which yields an additional
torque and random noise for the rotational motion. Our simulations suggest a way to control the rotational
dynamics of squirmer-type microswimmers by the degree of polymer adsorption and system heterogeneity.
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Self-propelled microorganisms are habitually exposed to
complex fluid environments [1] consisting of solutions with
a broad range of dispersed macromolecules and colloidal
particles [2]. However, our current understanding of
microorganism locomotion mainly rests upon Newtonian
fluids whose properties are governed by viscous stresses,
whereas complex fluids are viscoelastic, i.e., they are non-
Newtonian, which implies additional elastic effects [3–5].
Potential medical and industrial applications have triggered
numerous investigations of the motility of microorganisms
in complex fluids, like bacteria swimming and swarming
in a biofilm [6] and moving sperm in the reproductive tract
[7]. Intuitively, the existence of high-molecular weight
macromolecules can be expected to slow down the trans-
lational motion of swimmers because of the (substantially)
enhanced viscosity [8–11]. However, increased swimming
speeds have been reported [4,12–20], where enhancement
is attributed to mechanical responses caused by fluid
viscoelasticity [4,11,13,14,21], local shear thinning
[15,22], and polymer depletion [20,23]. In addition, vis-
coelasticity affects other microswimmer properties, such as
their rotational motion. Recent experimental studies of self-
propelled Janus colloids in a viscoelastic fluid yield a
drastically enhanced rotational diffusion by up to 2 orders
of magnitude [24]. A further increase of activity can even
result in persistent rotational motion [25].
In order to shed light onto microscopic mechanisms that

lead to an enhanced rotational motion, we perform mes-
oscale hydrodynamic simulations of a spherical squirmer
embedded in a fluid employing the multiparticle collision
dynamics (MPC) approach [26,27]. Viscoelasticity is
captured by taking linear polymers explicitly into account,
which we consider to adsorb on the colloid surface. By
variation of the squirmer activity, our simulations yield a
drastic enhancement of its rotational diffusion by more than

an order ofmagnitude, in particular in a dilute solution of self-
avoiding polymers. This increase is induced by an inhomo-
geneous distribution of (partially) adsorbed polymers on the
squirmer surface moving in the squirmer-induced flow field.
Through the adjustment of the squirmer-polymer-interaction
strength and system heterogeneity, our results demonstrate
the feasibility of controlling the rotational motion of
squirmer-type microswimmers in a complex environment.
We consider a squirmer, which is modeled as a neutral

buoyant hard sphere of radius ϱ with the prescribed
tangential surface slip velocity [28,29],

usq ¼
3

2
U0 sinðθÞ½1þ β cosðθÞ�eθ; ð1Þ

where U0 is the swimming velocity, θ is the polar angle
with respect to the squirmer’s orientation and swimming
direction e, eθ is the local tangent vector, and β character-
izes the active stress (β < 0 pusher, β ¼ 0 neutral squirmer,
β > 0 puller); see Fig. 1. The actual flow field of a

FIG. 1. Sketch for a spherical squirmer of radius ϱ with
propulsion direction e, radial unit vector er, and tangential
unit vector eθ immersed in a viscoelastic fluid of MPC fluid
particles (blue dots) and self-avoiding polymers (yellow bead-
spring chains).
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swimmer is determined by its particular propulsion mecha-
nism, which for a diffusiophoretic particle depends on the
details of the spatial distribution and the type of chemical
reactions across its surface [30]. Here, we focus on neutral
squirmer, i.e., β ¼ 0. Results for pushers and pullers are
presented in the Supplemental Material (SM) [31].
A linear polymer is composed of Nm touching beads,

connected by strong harmonic bonds of finite rest length l0
(Fig. 1) (cf. SM for details [31]). Polymer excluded-volume
interactions are taken into account by a truncated and
repulsive Lennard-Jones potential. Polymer adsorption
onto the squirmer surface is triggered by the radial,
attractive separation-shifted Lennard-Jones-type potential,

UaðraÞ
kBT

¼ 4ϵa

��
a

raþ1.377a

�
8

−
�

a
raþ1.377a

�
4
�
; ð2Þ

for monomer-squirmer distances ra < 3a and zero other-
wise, where ra is the monomer distance with respect to the
colloid surface, ϵa the attraction strength, and a the length
of a MPC collision cell (cf. SM [31]). At the colloid surface,
themonomers experience an effective slip velocity due to the
tangential squirming velocity of the fluid. The latter can be
understood as an effective description of the transport
mechanism of ciliated or phoretic microswimmers. A
well-known example is the transport of mucus (a viscous
polymer gel) by ciliated surfaces in the airways. Similarly,
we expect polymer adsorption on colloids to be generic, as

for polyacrylamide polymers absorbing on both halves of
the silica-carbon Janus particles employed in Ref. [24]. By
the coarse-grained nature of our polymer model, every
monomer bead corresponds to several molecular segments
of a real polymer, with a correspondingly enhanced attrac-
tion strength. However, the ratio between colloid diameter
2ϱ and bead size σ ≈ l0 (typically 2ϱ=l0 ¼ 12) is small
compared to that of a real colloid and polymer. Nevertheless,
the qualitative behavior does not depend significantly on the
monomer size, as simulations of systems of phantom
polymers with pointlike beads reveal a qualitative similar
behavior as of self-avoiding polymers with Lennard-
Jones beads.
The squirmer and polymer dynamics is treated by

molecular dynamics (MD) simulations, describing the rota-
tional motion of a squirmer by quaternions [29]. For the
MPC fluid [26,27], the stochastic-rotation-dynamics variant
with angular momentum conservation (MPC-SRDþ a) is
applied [52]. Details of the implementation and the applied
parameters are presented in the SM [31].
We performed between 25 and 50 independent simu-

lation runs of 5 × 106 MPC steps (108 MD steps) for every
displayed parameter set. Averages, denoted by h� � �i, are
taken over the various realization and well-separated
configurations of individual runs (time average).
Figure 2 displays simulation results for the rotational

mean square displacement (RMSD) of the propulsion
direction e of a neutral squirmer as a function of time
for a system with Np ¼ 24 polymers of length Nm ¼ 240

and the packing fraction ϕ=ϕ� ¼ 0.75. Here, ϕ� ¼ Nm=Vp

is the overlap concentration with the polymer volume Vp ¼
4πR3

g=3 in terms of the polymer radius of gyration Rg.
Simulations yield R0

g=l0 ≈ 11.7 for Nm ¼ 240 at infinite
dilution. By fitting the expression

h½eðtÞ − eð0Þ�2i ¼ 2ð1 − e−2D
a
r tÞ; ð3Þ

the activity-dependent rotational diffusion coefficient
Da

r can be deduced. The rotational diffusion coefficient
of the passive colloid, Dp

r ¼ 4.7 × 10−6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ma2

p
, in

the polymer solution is reduced by a factor of 5 compared
to that of the colloid in the bare MPC fluid, D0

r ¼
2.3×10−5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ma2

p
, reflecting a strong interaction with

the polymers. Evidently, activity significantly enhances the
rotational diffusion, which we characterize by the rotational
diffusion enhancement γa ¼ Da

r=D
p
r . Our simulations yield

the values γa ¼ 17 and γa ¼ 23 for U0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 1=30
and 1=15, respectively.
The short-range attraction implies a substantial monomer

increase in the vicinity of the colloid, as illustrated in the
SM, Fig. S2 [31], which is the origin of the reduced
rotational diffusion of the passive colloid. Activity reduces
the monomer concentration, i.e., depletes the polymer next
to the squirmer. We attribute this effect to a flow-induced

FIG. 2. Rotational mean square displacement (RMSD) of a
neutral squirmer, β ¼ 0, as a function of time for various self-
propulsion velocities U0. Green dashed curves are exponential
fits according to Eq. (3), which yields the effective rotational
diffusion coefficients Da

r × 105=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ma2

p
¼ 0.47, 7.8, 11 for

U0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 0; 1=30; 1=15, respectively. The black dashed
line is the RMSD of a squirmer in a simple fluid, with the
rotational diffusion coefficientD0

r ¼ 2.3 × 10−5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=ma2

p
. The

error bars indicate the standard deviation. The snapshots illustrate
the polymer conformations and distribution. The polymer length
is Nm ¼ 240, the number of polymers Np ¼ 24, and the mono-
mer packing-fraction ratio ϕ=ϕ� ¼ 0.75.
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desorption of polymers by the active colloid motion.
Qualitatively, this is similar to experimental [15] and
simulation results [20] for bacteria swimming in a visco-
elastic fluid and is assumed to be relevant for their observed
enhanced swimming speed. Hence, the increase of the
rotational diffusion coefficient can be partially attributed to
the decreased amount of adsorbed polymers.
The main rotational enhancement is caused by a second

effect, the active polymer transport on the colloid surface.
The directed active motion along e leads to an asymmetric
encounter with the dissolved polymers compared to ther-
mal motion—it is enhanced in the propulsion direction
(front). At the same time, the imposed slip velocity [Eq. (1)]
causes a transport of the polymer from the front of the
colloid to its rear. The polymer transport, together with the
required momentum conservation, leads to an enhanced
squirmer rotational diffusive motion, as is illustrated in
Fig. 3 for a neutral squirmer. In Fig. 3(a), several adsorbed
polymers are shown, where the yellow polymer just adsorbs
in front. Evidently, the polymer distribution is asymmetric.
Figures 3(b)–3(d) illustrate the dynamics of the yellow
polymer, which is gradually transported by flow from the
front to the rear part of the squirmer. Momentum con-
servation implies the opposite motion of the whole
squirmer, as is visible by the displacement of the red label.
Since a squirmer more frequently encounters polymers in
front, with no preferential azimuthal angular dependence of
absorption, an additional random rotational motion is
obtained on top of the rotation by Brownian noise, which
enhances the overall rotational diffusion.

This mechanism is most effective as long as the polymer
distribution on the squirmer surface is sufficiently low. At
high polymer concentrations, the adsorption rate is larger
and more homogeneous with a virtually radially symmetric
polymer transport on the surface, which restores a sym-
metric distribution of extra torques and, hence, implies a
drop of the activity-enhanced rotational motion. Rotational
mean square displacements for a neutral squirmer at various
swimming velocities are presented in Fig. 4 as a function of
the polymer concentration. (Results for β ≠ 0 are presented
and discussed in the SM, Fig. S7 [31].) The data forU0 ¼ 0
indicate the drop of the RMSD by approximately 1 order of
magnitude with increasing polymer concentration. In con-
trast, for U0 > 0, the RMSD increases first with increasing
concentration and drops for ϕ=ϕ� ≳ 0.38. At small con-
centrations, Da

r is larger than D0
r of the colloid in the

bare MPC fluid. However, above an activity-dependent
concentration, Da

r drops below D0
r (Da

r=D0
r < 1 in Fig. 4).

The diffusion enhancement γa ¼ Da
r=D0

r is significant
for all concentrations, despite the fact that Da

r drops below
D0

r , because D
p
r decreases stronger with increasing ϕ than

Da
r . As shown in Fig. 4, γa assumes values in the range

1 < γa ≲ 25 for the considered propulsion velocities. The
maximum values are reached at ϕ=ϕ� ≈ 1.5. At ϕ=ϕ� ≈ 17,
the rotational enhancement is still significant, with γa ≈ 5

and 8 for U0=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 1=30 and 1=15, respectively.
The squirmer locomotion in turn affects the polymer

conformations, reflecting the viscoelastic nature of the
solution. As shown in Fig. 5, the polymer radius of gyration
in the presence of a passive colloid decreases with
increasing concentration due to screening of polymer
excluded-volume interactions (R2

g=ðR0
gÞ2 < 1) [53,54]. In

fact, for ϕ=ϕ� ≫ 1, the same concentration dependence is

FIG. 3. (a) Snapshot of a neutral squirmer with several adsorbed
polymers. The self-propulsion velocity is U0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 1=15
and the monomer concentration is ϕ=ϕ� ¼ 0.75. For a better
visualization, adsorbed polymers are displayed with different
colors. (b)–(d) Time sequence of the polymer transport and
squirmer rotation by the fluid flow. The red dot indicates the
squirmer’s propulsion direction. See Supplemental Material for
an animation [31].

FIG. 4. Normalized rotational diffusion coefficient Da
r=D0

r

(solid lines) and its enhancement γa ¼ Da
r=D

p
r (dashed lines)

as a function of monomer concentration ϕ=ϕ� for the propulsion
strengths U0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 0 (triangles), 1=30 (squares), and
1=15 (bullets); β ¼ 0 and ϵa ¼ 15. Diffusion coefficients are
obtained within 10%–25% accuracy, depending on polymer
density.
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obtained, independent of activity (see SM [31]). However,
we observe a significant increase in the polymer size at
smaller concentrations, ϕ=ϕ� < 3, which depends on the
activity of the squirmer (see also SM, Fig. S3 [31]) [55,56].
Here, due to the limited system size, all polymers are
affected. For sufficiently larger system sizes, far from the
squirmer, the unperturbed, concentration-dependent equi-
librium polymer configuration is assumed (see SM). The
latter is visible for higher concentrations, where the
polymer conformations are rather similar for all activities.
In the vicinity of a surface, the radius of gyration of a
polymer decreases with decreasing distance from the sur-
face, where surface attraction substantially enhances the
effect, whereas activity reduces compactification. By wrap-
ping around the squirmer, the polymer center of mass can
be located inside the colloid. Center-of-mass distances
rc:m:=ϱ ≪ 1 appear for rather deformed polymers, where
the radius of gyration increases again.
Our results indicate a major influence of the polymeric

nature of the adsorbed object on the enhancement of the
rotational diffusion of squirmers, because simulations of
monomers only yield approximately the same squirmer
rotational diffusion as obtained for a bare MPC fluid,
despite strong monomer adsorption and active transport
(cf. SM for results of polymers with Nm ¼ 60 [31]).
A significant larger enhancement of the rotational

diffusion coefficient has been obtained in the experiments
of Ref. [24] for Janus particles in polymer solutions. This
could be related to the larger size ratio of the Janus particle
and polymer radius of gyration in the experiment compared
to the current simulation study. In fact, in experiments,
the rotational diffusion coefficient of the passive Janus
colloid in the polymer solution is by a factor of

approximately 30 smaller than that of the colloid in the
bare binary mixture, while in our case, the factor is
approximately 5 at ϕ=ϕ� ¼ 0.75. Hence, a possible
depletion of polymer in the vicinity of the colloid by
activity would already imply a significantly larger rota-
tional diffusion in experiments than in simulations.
In Ref. [25], the rotational enhancement is attributed to

memory effects of the viscoelastic fluid, where an internal
force nonaligned with the actual squirmer orientation
emerges in a coarse-grained continuum “macroscopic”
description. In simulations, we find concentration-depen-
dent reduced swimming velocities on the order of 40%, but
the swimming direction is closely aligned with the pro-
pulsion direction. Hence, we cannot explain the observed
effect by misalignment of propulsion and swimming
direction.
In our microscopic simulations, rotational enhancement

of neutral squirmers originates from two effects: (i) reduc-
tion of the amount of adsorbed polymers by activity
compared to that of a passive colloid—implying an
increase in the rotational diffusion coefficient—and (ii) an
asymmetric encounter of the squirmer with polymers at the
front leading to an additional torque by the surface fluid
flow, which yields an additional random contribution to
the rotational motion. We would like to emphasize that the
polymer character of the solute is important and that the
rotation enhancement depends on polymer length as shown
in the SM [31]. In particular, we do not observe an
enhancement for a pure monomer solution.
Various other scenarios of colloid-polymer interac-

tions are possible: local attachment with finite lifetime,
temporary local attachment on various patches, local
permanent attachment, or even active stress-induced
hydrodynamic accumulation (jβj > 0). We present results
for the latter two cases in the SM. For a few locally bound
beads, which are not transported by the surface flow field,
we find a continuous rotational motion opposite to the
case of homogeneous attraction, and the squirmer prop-
agates along circular trajectories reminiscent of those
observed in Ref. [25]. Sufficiently strong pusher flow
fields lead to an enhanced polymer accumulation, which
amplifies the rotational diffusive motion (cf. SM for more
details [31]).
The flow field of a phoretic Janus particle is well

described by a squirmer-type model employing a pho-
retic-slip hydrodynamic boundary condition, equivalent to
our approach, however, with a somewhat different flow
field [30,57]. Hence, the proposed monomer transport by
surface slip may also be relevant for Janus particles.
Differences in adsorption affinity of the two materials,
however, may lead a preferred adsorption of the polymer to
one of them. This could lead to pinning of a polymer at
their interface line, and consequently to a rotation as
emerging by our pinned polymer. Here, further studies
taking into account the Janus-type structured colloidal

FIG. 5. Polymer radius of gyration R2
g scaled by the value

at infinite dilution ðR0
gÞ2 as a function of the radial polymer

center-of-mass position rc:m: from the squirmer center for
U0=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kBT=m

p ¼ 0 (red), 1=30 (yellow), and 1=15 (blue) and
the concentration ratios ϕ=ϕ� ¼ 0.75 (solid), 2.95 (dashed), and
17.3 (dotted); β ¼ 0 and ϵa ¼ 15. The shaded area indicates
polymer center-of-mass positions inside of the squirmer.
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surfaces are desirable, which can be performed by our
modeling approach.
Our simulations suggest a possible mechanism to

modify and control the rotational motion of an active
colloid with slip velocity in polymer solutions. In particu-
lar, they emphasize the importance of an inhomogeneous
and anisotropic squirmer-polymer interaction. Further stud-
ies are necessary to resolve the actual mechanism in
experiments, with a rather complex interplay of phoretic
flow fields and polymer colloid interactions.
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