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Antiferromagnetic (AFM) spintronics exploits the Néel vector as a state variable for novel spintronic
devices. Recent studies have shown that the fieldlike and antidamping spin-orbit torques (SOTs) can be
used to switch the Néel vector in antiferromagnets with proper symmetries. However, the precise detection
of the Néel vector remains a challenging problem. In this Letter, we predict that the nonlinear anomalous
Hall effect (AHE) can be used to detect the Néel vector in most compensated antiferromagnets supporting
the antidamping SOT. We show that the magnetic crystal group symmetry of these antiferromagnets
combined with spin-orbit coupling produce a sizable Berry curvature dipole and hence the nonlinear AHE.
As a specific example, we consider the half-Heusler alloy CuMnSb, in which the Néel vector can be
switched by the antidamping SOT. Based on density-functional theory calculations, we show that the
nonlinear AHE in CuMnSb results in a measurable Hall voltage under conventional experimental
conditions. The strong dependence of the Berry curvature dipole on the Néel vector orientation provides a
new detection scheme of the Néel vector based on the nonlinear AHE. Our predictions enrich the material
platform for studying nontrivial phenomena associated with the Berry curvature and broaden the range of
materials useful for AFM spintronics.
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Spintronics is a research field that studies the active
control and detection schemes of the spin degrees of
freedom in solid-state systems [1]. Over decades, novel
phenomena have been discovered in the variety of ferro-
magnet-based layered structures, forming the core elements
for spintronic applications. Recently, effort in the field has
been deployed to enhance the device switching speed and
reduce power consumption. In this regard, antiferromagnets
are outstanding candidates to replace the widely used
ferromagnets in the next generation of spintronic applica-
tions due to their robustness against magnetic perturba-
tions, absence of stray fields, and ultrafast dynamics [2–6].
Recent findings have shown that the fieldlike spin-orbit

torque (SOT) can be used to control the Néel vector in
antiferromagnets with P̂ T̂ symmetry (where P̂ is the space
inversion symmetry and T̂ is the time reversal symmetry)
[7–9], such as CuMnAs [10], Mn2Au [11], and MnPd2
[12]. The antidamping SOT can be used for Néel vector
switching in globally noncentrosymmetric antiferromag-
nets, such as CuMnSb [8–10,13,14]. On the other hand, it is
extremely difficult to detect the Néel vector in antiferro-
magnets using common magnetometers or magnetic reso-
nance techniques due to the absent net magnetization and
ultrafast magnetization dynamics [2]. Current experiments
exploit the anisotropic magnetoresistance (AMR) effect to
detect the Néel vector switching [2,10], where the readout
speed is limited by its small magnitude [5]. Accurate

detection of the Néel vector orientation is possible using
optical methods [15–17]. However, the specific require-
ments of these experimental techniques limit their device
application. An efficient electric detection of the Néel
vector using a conventional experimental setup would be
desirable for a practical AFM spintronic device.
The anomalous Hall effect (AHE) [18,19] is a transport

phenomenon driven by the Berry curvature Ω, a quantity
inherent in the electronic band structure of a material
[20–22]. Since Ω is odd under time reversal symmetry
T̂, i.e., T̂ΩðkÞ ¼ −Ωð−kÞ, where k is the wave vector, the
integral ofΩ over the full Brillouin zone (which determines
the AHE) may be nonzero for materials with broken T̂ [20].
Since antiferromagnets have broken T̂ symmetry, they may
support the nonvanishing AHE, which can be used for Néel
vector detection. Recently, the AHE has been discovered in
noncollinear antiferromagnets [Fig. 1(a)], such as Mn3X
(X ¼ Ga, Ge, Sn, or Ir) [23–28] and Mn3AN (A ¼ Ga, Zn,
Ag, or Ni) [29–31], and collinear antiferromagnets with
specific arrangement of nonmagnetic atoms in the crystal
lattice [Fig. 1(b)], such as CoNb3S6 [32–34]. These
compounds hold, however, the net magnetization M
resulting from the weak canting of the local moments.
This is due to no magnetic group symmetry operation T̂ Ô
(Ô is a crystal space group symmetry operation) enforcing
M to be zero, as follows from T̂ ÔM ¼ −M [35].
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Therefore, these canted antiferromagnets are not truly
invisible to the magnetic perturbations. For example, the
net magnetization of Mn3Ge can be rotated by a small
magnetic field, leading to reversal of the AHE [26]. To
avoid such instabilities, the fully compensated antiferro-
magnets with M ¼ 0 are desirable for robust AFM spin-
tronic devices. Zero magnetization requires, however,
the T̂ Ô symmetry, which prohibits the AHE since Ω is
antisymmetric with respect to T̂ Ô, i.e., T̂ ÔΩðk0Þ ¼
−ΩðkÞ and T̂ Ô k0 ¼ k. Thus, it is impossible to have a
linear AHE in fully compensated antiferromagnets.
This problem can be solved with a recently discovered

nonlinear AHE [36–42]. In contrast to the linear AHE,
where the Hall voltage is linear to an applied electric field
as found in numerous magnetic (i.e., T̂ broken) systems, the
nonlinear AHE occurs in second-order response to an
electric field as demonstrated for a certain class of non-
magnetic (i.e., T̂ invariant) materials. The nonlinear AHE
requires broken P̂ symmetry and arises from the Berry
curvature dipole D, which generates a net anomalous
velocity when the system is in a current-carrying state
[36]. So far, however, the nonlinear AHE has been
considered only for nonmagnetic materials where T̂ sym-
metry is preserved. Extending this concept to AFM
materials where T̂ symmetry is broken is interesting and

desirable, as it would broaden a range of measurable
properties useful for AFM spintronics.
In this Letter, we predict that the nonlinear AHE does exist

in most compensated antiferromagnets supporting the elec-
tric control of the Néel vector by antidamping SOT. As a
specific example, we consider the half-Heusler alloy
CuMnSb and demonstrate, based on first-principles den-
sity-functional theory (DFT) calculations (see Supplemental
Material [43]), that a polar axis and a combined T̂t̂1=2
symmetry (where t̂1=2 is a translation of half the unit cell)
support a sizable nonlinear AHE due to a finite Berry
curvature dipole. Moreover, we predict a strong dependence
of the Berry curvature dipole and hence the nonlinear AHE
on the AFM Néel vector orientation, which can be used for
the Néel vector detection in similar compounds.
The Berry curvature dipole density tensor d is defined

as dbd ¼ −ð∂f0=∂kbÞΩd, where kb and Ωd are Cartesian
components of the wave vector and the Berry curvature,
respectively, and f0 is the equilibrium Fermi distribution
function. It is odd under P̂, and therefore, the nonlinear
AHE in antiferromagnets requires a noncentrosymmetric
structure. In fact, the condition is even more stringent and,
similar to nonmagnetic systems, necessitates the presence
of gyrotropic symmetry constraints [36,55,56]. We find that
most compensated antiferromagnets supporting the anti-
damping SOT fulfill the symmetry requirements for the
nonlinear AHE. Among the 123 noncentrosymmetric
compensated antiferromagnets reported in the Bilbao
MagnData database, there are 118 compounds with the
magnetic space groups supporting the finite Berry curva-
ture dipole [57,58].
For example, a polar axis and T̂t̂1=2 symmetry [Fig. 1(c)]

are sufficient for the nonlinear AHE to emerge in an
antiferromagnet, due to d being even under the T̂t̂1=2
transformation, i.e., T̂t̂1=2dðkÞ ¼ dð−kÞ. This is the case
for the half-Heusler alloy CuMnSb, an AFM metal sup-
porting the antidamping SOT [8–10]. Figures 2(a) and 2(b)
show the CuMnSb structure that belongs to the crystal
space group F4̄3m [13,14,59]. Below the Néel temper-
ature TN ¼ 55 K, a type-II collinear AFM order emerges,
where the magnetic moments of the Mn atoms are parallel
within the (111) plane but antiparallel between the
successive (111) planes [Fig. 2(a)]. The Néel vector is
pointed along the [111] direction. This AFM order lowers
the symmetry, resulting in the magnetic space group
RI3c [14]. The rhombohedral primitive cell of CuMnSb
[Fig. 2(b)] contains threefold rotation Ĉ3 around the [111]
direction and three glide mirror reflections ĝ1̄10, ĝ1̄01, and
ĝ01̄1, where ĝl ¼ fM̂ljt̂1=2g is mirror symmetry M̂l normal
to vector l combined with half a unit cell translation t̂1=2.
In addition, below 34 K the Néel vector is canted toward
the [110] direction by δ ¼ 11° [14,60]. This canting
breaks the Ĉ3, ĝ1̄01, and ĝ01̄1 symmetries, leading to
the magnetic space group Ccc in which only ĝ1̄10 is

FIG. 1. (a) A noncollinear antiferromagnet with broken T̂ and
absent T̂ Ô symmetry (Ô is a crystal space group symmetry
operation), such that T̂ ÔΩðk0Þ ¼ −ΩðkÞ (left), resulting in a
linear AHE (right). (b) A collinear antiferromagnet with a specific
arrangement of nonmagnetic atoms in the crystal lattice, in which
both T̂ and T̂ Ô symmetries are absent (left), resulting in a linear
AHE (right). (c) A collinear antiferromagnet with broken P̂ and T̂
symmetries but preserved T̂t̂1=2 symmetry (left), resulting in a
nonlinear AHE (right).
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preserved [14]. Both AFM phases of CuMnSb are polar
and contain the T̂t̂1=2 symmetry.
First, we investigate the AFM phase of CuMnSb without

canting. Assuming the experimental lattice constant
a ¼ 6.075 Å, we find the calculated magnetic moment
of 3.93 μB=Mn consistent with the experimental value of
3.9ð�0.1Þ μB=Mn [14]. Figure 2(c) shows the calculated
band structure. There are six bands crossing the Fermi
energy EF, mostly contributed by 3d electrons of Mn [61]
(Fig. S1 [43]). The four valence bands are very dispersive
with the maximum around the Γ point, forming four hole
pockets along the Γ-Z direction. The bands at the con-
duction band minimum are less dispersive, forming elec-
tron pockets near the edges of the top and bottom surfaces
of the Brillouin zone (Fig. S1 [43]). There are multiple
crossings and anticrossings in the band structure near EF.
For example, in Figs. 2(c) and 2(d) we show the band
crossings by the second and third valence bands (purple
lines). As seen from Fig. 2(d), there are two Weyl points
at E ¼ 0.102 eV (W1) and E ¼ −0.051 eV (W2). The band
crossings close to the Weyl points are strongly tilted. As is
evident from Fig. 2(e), W1 and W2 are located at the
touching points of the two Fermi pockets. This indicates

that W1 and W2 are type-II Weyl fermions [62,63]. By
application of T̂t̂1=2, Ĉ3, and glide symmetry transforma-
tions toW1 andW2, we obtain six pairs ofW1 and six pairs
of W2 Weyl fermions located in the central part of the
Brillouin zone (Fig. S1 [43]).
Next, we discuss the nonlinear Hall response. Electric

field Ec ¼ RefEeiωtg of amplitude E and frequency ω

produces nonlinear current Ja ¼ RefJð0Þa þ Jð2Þa ei2ωtg,
where Jð0Þa ¼ χð0ÞabcEbE�

c describes the rectified current and

Jð2Þa ¼ χð2ÞabcEbE�
c describes the second harmonic current.

For a system with time reversal symmetry, the response
coefficients are [36]

χð0Þabc ¼ χð2Þabc ¼ −ϵadc e3τDbd

2ℏ2ð1þ iωτÞ ; ð1Þ

where τ is the relaxation time, and Dbd is the Berry
curvature dipole defined as

Dbd¼
Z

d3k
ð2πÞ3dbd¼−

Z
d3k
ð2πÞ3

X
n

∂Enk

∂kb Ωd
nk

∂f0
∂Enk

: ð2Þ

Here Enk is the energy of the nth band at the k point. The
Berry curvature of the nth band is given by [20,22]

Ωd
nk ¼ iϵabd

X
m≠n

hnj ∂H∂ka jmihmj ∂H∂kb jni
ðEnk − EmkÞ2

: ð3Þ

The factor ∂Enk=∂kb is odd under both P̂ and T̂
symmetries and Ωd

nk is odd under T̂ and even under P̂
[22]. As a result, dbd in Eq. (2) is even with respect to T̂,
leading to nonzero Dbd and a finite nonlinear AHE in a
noncentrosymmetric system without magnetism. In an
antiferromagnet like CuMnSb, the preserved T̂t̂1=2 sym-
metry plays the same role as T̂ on ∂Enk=∂kb and Ωd

nk, and
the polar axis ensures a nonzero D. Therefore, a finite Dbd
can be also expected in such an antiferromagnet.
There is only one independent element of the D tensor in

the AFM phase without canting (see Supplemental Material
[43] Table SII). For definiteness, we consider Dxz directly
related to Jy ¼ χyxxE2

x, a transverse nonlinear Hall current
along the y ([010]) direction produced by a longitudinal
electric field along the x ([100]) direction. Figures 3(a)
and 3(b) show the projection of Dxz on the k1-k2 plane, at
E ¼ 0.102 eV [Fig. 3(a)] and E ¼ −0.051 eV [Fig. 3(b)],
which is obtained by integration

R ðdk3=2πÞdxz. According
to Eq. (2),Dxz is a Fermi surface property, and thus only the
Fermi pockets contribute to Dxz. We find that the con-
tribution by the Fermi pockets from the conduction bands
is negligible compared to those from the valence bands.
This is due to the valence bands near their maximum
having stronger dispersion, which leads to larger velocity

FIG. 2. (a),(b) The collinear AFM magnetic structure of
CuMnSb shown in a conventional cubic unit cell (a) and a
rhombohedral primitive cell (b). Red arrows denote the magnetic
moments of Mn. The light blue plane denotes the glide plane ĝ1̄10.
(c) The band structure of CuMnSb near EF. (d) The band
structures close to Weyl points W1 with k2 ¼ 0.054 and k3 ¼
0.004 Å−1 (left) and W2 with k2 ¼ 0.115 and k3 ¼ 0.081 Å−1
(right). Here k1, k2, and k3 are along the [1̄10], [1̄ 1̄ 2], and [111]
directions in the cubic lattice. The purple lines in (c),(d) denote
the two bands forming Weyl points. The horizontal dashed line
indicates the Fermi energy. (e) The Fermi surfaces at k3 ¼
0.004 Å−1 and E ¼ 0.102 eV (left) and at k3 ¼ 0.081 Å−1
and E ¼ −0.051 eV (right). The Weyl points are located at
the intersection points of the Fermi surfaces.
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vx ¼ ∂Enk=∂kx [Fig. 2(c)]. On the other hand, the gaps
between the valence bands are very small near EF, which
leads to larger Ωz

nk according to Eq. (3). Therefore, as seen
from the energy dependence of Dxz in Fig. 3(c), the
magnitude of Dxz increases with energy decreasing, due
to the increase of the volume of the central Fermi surfaces
from the valence bands. The calculatedDxz is about−0.048
at EF, and can be enhanced to −0.080 by proper doping
[Fig. 3(c)]. These values are comparable to those obtained
for nonmagnetic metals [38,39].
We note that the contributions of the Weyl fermions W1

and W2 to Dxz are different. The states near W1 dominate
Dxz around E ¼ 0.102 eV, as shown in Fig. 3(a) and
Supplemental Material Fig. S4 [43], leading to the anomaly
in the Dxz curve at this energy [Fig. 3(c)]. On the
other hand, there is no pronounced contributions from
W2 [Fig. 3(b)] due to the weak tilting of the Weyl cones
[43], which suppresses the anomaly in the Dxz curve at
E ¼ −0.051 eV [Fig. 3(c)]. We note that the calculatedDxz
at EF is independent of W1 and W2, since D is the Fermi
surface property, and W1 and W2 lie away from EF. The
suitable symmetry, dispersive band structure, and strong
spin-orbit coupling are sufficient to produce a sizable D
at EF.
At low temperature, the Néel vector is tilted toward the

[110] direction by δ ¼ 11° [14]. This weak canting leads
to tiny changes of the band structure (Fig. S2 [43]).

Nevertheless, breaking the Ĉ3, ĝ1̄01, and ĝ01̄1 symmetries
alters the number and the positions of the Weyl fermions
(Fig. S2 [43]). The energy dependence of Dxz in this AFM
phase is generally similar to that in the AFM phase without
canting, except for sharper peaks above EF due to the
different distribution of the Weyl points [Fig. 3(c) and
Supplemental Material Fig. S2 [43] ]. Moreover, the change
of symmetry influences the D tensor [43], resulting in
different magnitudes of Dxy and Dxz (Supplemental
Material Table SII [43]). This difference can be further
enhanced by stronger canting. For example, for the canting
angle of δ ¼ 90° (similar to that in a half-Heusler alloy
GdMnBi [64]), we find Dxy ¼ 0.072 being much larger
than Dxz (Table SII [43]). Since Dxy is related to the Hall
voltage Vz, the large difference between Dxy and Dxz leads
to different nonlinear Hall responses in the y and z
directions, which can be used to detect Néel vector canting.
The sensitivity of the Berry curvature dipole to the Néel

vector orientation implies that the nonlinear AHE can be
used to detect it. The type-II AFM order with the Néel
vector normal to the (111) planes in CuMnSb is energeti-
cally identical to that normal to the (1̄11), (11̄1), or (111̄)
planes. These orders are expected to have different signs of
the transverse and vertical Hall voltage [Fig. 4(a)]. For
example, switching the Néel vector from (111) to (111̄) is
equivalent to the C2 rotation around the [001] direction.
This operation changes the sign of Dxz but does not affect
Dxy. Therefore, Vy is reversed and Vz does not change by
this switching. Figure 4(b) schematically shows a SOT
device for such switching. The Néel vector is switched by
the antidamping SOT using current Jw (usually
∼107–108 A=cm2). The switched Néel vector can be
detected by measuring the Hall voltage Vy and Vz, as

FIG. 3. (a),(b) The projections of the Berry curvature dipole on
k1-k2 plane at (a) E ¼ 0.102 and (b) E ¼ −0.051 eV. Black cross
symbols denote position of the Weyl fermions. (c) The Dxz as a
function of energy for the AFM phase without (red line) and with
(blue line) canting of the Néel vector. (Inset) Schematic showing
the canting.

FIG. 4. (a) The signs of the Hall voltages Vy and Vz for
different AFM orders of CuMnSb. (b) A spin-orbit torque device
where the AFM orders of CuMnSb are switched using the
antidampinglike SOT generated by the writing current Jw.
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shown in Fig. 4(a). Considering a sample of 100 μm in
length and typical reading current Jx ¼ 5 × 106 A=cm2, the
Hall voltage of Vy ∼ 14–90 μV in the dc limit is estimated
[43], which is well within the capacity of experiments.
Importantly, a high frequency electric field can generate

a steady rectified component and the second harmonic
component in the Hall current. This allows us to distinguish
the nonlinear AHE signal from the noise induced by the
input first harmonic electric field. This feature implies
the possible measurement of nonlinear AHE generated by
high frequency fields, such as picosecond pulses using the
noncontact technology, which is very promising for effi-
cient ultrafast detection [40,65,66].
The nonlinear AHE is expected to exist in a broad

range of AFM materials, in which the Néel vector can
be controlled by the antidamping SOT. In addition to
CuMnSb, AFM metals PdMnTe [67] and Ca3Ru2O7

[68–70] are promising candidates to host a large nonlinear
AHE due to the strong spin-orbit coupling induced by the
heavy metal elements.
In conclusion, we have predicted that the nonlinear AHE

exists in most compensated antiferromagnets, supporting
the electric control of the Néel vector by antidamping SOT.
As an example, we have considered the half-Heusler alloy
CuMnSb and showed that this antiferromagnet has a large
Berry curvature dipole resulting in a sizable nonlinear
AHE. The strong dependence of the Berry curvature dipole
on the Néel vector orientation provides a new detection
scheme of the AFM order, which is useful for AFM
spintronics. We hope therefore that our theoretical predic-
tions will motivate experimentalists to explore the non-
linear AHE in antiferromagnets.
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