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We study the temperature dependence of the magnetic penetration depth in a 3D topological
superconductor (TSC), incorporating the paramagnetic current due to the surface states. A TSC is
predicted to host a gapless 2D surface Majorana fluid. In addition to the bulk-dominated London response,
we identify a T3 power-law-in-temperature contribution from the surface, valid in the low-temperature
limit. Our system is fully gapped in the bulk, and should be compared to bulk nodal superconductivity,
which also exhibits power-law behavior. Power-law temperature dependence of the penetration depth can
be one indicator of topological superconductivity.
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A decade after the widespread infiltration of topology
into quantum materials research, the search for electroni-
cally correlated topological phases beyond the fractional
quantum Hall effect remains an urgent but still largely
unfulfilled quest. Topological superconductivity [1,2]
is sought as a platform for Majorana fermion zero modes
[3] and topological quantum computation [4]. Majorana
fermions could be detected by various means, including
tunneling spectroscopy [5–9], the Josephson effect
[5,10,11], as well as spin and optical responses [12,13].
Only a handful of materials have emerged as bulk

topological superconductor (TSC) candidates. Topological
superconductivity has long been suspected in Sr2RuO4,
although a consensus on chiral p-wave order is yet to be
reached [2,14–16]. Time-reversal invariant TSCs could serve
as solid-state analogs of the topological superfluid phase in
liquid helium (3HeB) [17–23]. In the absence of a magnetic
field, the predicted hallmark of such a bulk TSC is a gapless,
two-dimensional (2D) Majorana fermion surface fluid. It has
been argued that the odd-parity “ŝ · k” pairing of 3HeB
[24,25] could naturally arise in doped Dirac semimetals or
topological insulators [26–28]; here ŝ and k, respectively,
denote the spin-operator and momentum vectors.
Alternately, doped Weyl semimetals have been shown to
be natural platforms for topological superconductivity [29].
There is now substantial experimental evidence for nem-

aticity in the superconducting doped topological insulators
ðCu;NbÞxBi2Se3 [30–33] (see also [34]), possibly indicative
of odd-parity pairing. However, gapless Majorana fermions
have not been conclusively detected [33,35–37]. Recently,
signatures consistent with topological superconductivity
were also found in doped βPdBi2, but a conclusive detection
remains elusive [38]. In CuxBi2Se3, only a small percentage

of the exposed crystal surfacewas found to exhibit signatures
of superconductivity in scanning tunneling microscopy
(STM) [33], highlighting the possibility that, in inhomo-
geneous TSCs, there is no guarantee that Majorana fermions
will appear at the physical surface of the sample.
It is therefore natural to seek global probes of topological

superconductivity. Meissner effect penetration depth mea-
surements in NbxBi2Se3 [39,40] and in the half-Heusler
compounds YPtBi [41], YPdBi, and TbPdBi [42] exhibit
power-law temperature suppression, which is interpreted as
evidence for non-s-wave, bulk nodal superconductivity
[43]. In the case of NbxBi2Se3, the results were interpreted
as indicative of nodal odd-parity bulk pairing [39,40], while
the YPtBi results were attributed to either an exotic nodal-
line “septet” pairing scenario [41,44], or dþ id bulk Weyl
superconductivity [44], smeared by disorder [45].

FIG. 1. Schematic illustration for (a) type I and (b) type II
topological superconductors (TSCs) in an external magnetic field.
The gray and white regions represent respectively the TSC and the
vacuum. The red (green) arrows indicate the magnetic field that
decays into the superconductorwith (without) the correctiondue to the
surface states. The scale λð0ÞL is the London (bulk-dominated dia-
magnetic) penetration depth. The blue line is a sketch of theMajorana
surface fluid density, characterized by the coherence length lcoh.
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In this Letter, we show that power-law temperature (T)
dependence of the penetration depth λðTÞ can arise at
arbitrarily low T in a TSC with a fully gapped bulk, due to
the paramagnetic response of the gapless Majorana surface
fluid. This requires a nontrivial calculation employing a
TSC model with a physical surface-vacuum boundary, and
the result involves the convolution of the surface para-
magnetic and bulk-dominated diamagnetic responses. It
cannot be obtained from the surface Hamiltonian alone.
Thus, the observation of nonexponential behavior in λðTÞ
does not necessarily indicate bulk nodal pairing, and can be
one diagnostic for screening possible TSCs. We also show
that the magnetic field in a fully gapped TSC is sensitive to
the spatial profile of the surface states. This can be used to
differentiate gapless states from the surface versus those
from the bulk. By contrast, STM is sensitive only to the
sample surface density of states, while the finite energy
resolution of angle-resolved photoemission spectroscopy
(ARPES) might prevent the direct detection of Majorana
fermions in a low-temperature superconductor. While
power-law temperature dependence in the penetration
depth can arise from multiple mechanisms [46,47], it
can serve as one possible indicator for bulk topological
superconductivity. In general, one wants as many indepen-
dent tests as possible in order to identify TSCs.
We consider “minimal” TSCs in class DIII with winding

number ν ¼ 1, possessing a single surface Majorana cone.
We show that the leading correction to the London response
due to the presence of Majorana surface states scales
as T3. The same temperature dependence is predicted to
arise in the suppression of the mass flow of superfluid
3HeB through a channel, due to surface currents [48]. We
calculate explicitly the magnetic field profile inside the
slab, which incorporates new features introduced by the
surface states. For type I TSCs, the field penetrates much
deeper than the London depth into the bulk, with the scale
set by the coherence length. For type II TSCs the field is
modulated in a shallow region near the surface, and then
decays at deeper depths according to the London length,
but with an enhanced field amplitude.
Model.—We consider a superconducting slab filling

up the z > 0 half-space, with an external magnetic field
Bext ¼ B0ŷ as shown in Fig. 1. We assume the field is weak
enough such that B0 < Bc1 where Bc1 is the lower critical
field of a type II superconductor. Under this assumption,
the effect of vortex formation can be neglected and a linear
response treatment is valid. The total current J and the
vector potential A satisfy the static Maxwell’s equation

∇2AðzÞ ¼ −
4π

c
JðzÞ; ð1Þ

where AðzÞ ¼ AðzÞx̂, BðzÞ ¼ ∂zAðzÞŷ, JðzÞ ¼ JðzÞx̂, and

JðzÞ ¼ JextðzÞ −
1

c

Z
∞

0

dz0Πðz; z0ÞAðz0Þ: ð2Þ

Here, JextðzÞ is a fictitious current generating the external
magnetic field, and Πðz; z0Þ is the current-current correla-
tion function capturing the linear response of the TSC. The
above equations can be expressed as

−2B0 ¼ ½q2z þ ðλð0ÞL Þ−2�ÃðqzÞ

þ 4π

c2

Z
dQz

2π
Π̃xx

1;Rð0; 0; 0; qz;−QzÞÃðQzÞ; ð3Þ

where λð0ÞL is the London penetration depth and

Π̃xx
1;RðΩ ¼ 0; qx ¼ 0; qy ¼ 0; qz;−QzÞ;

¼ −i
Z

dtdxdy
Z

∞

0

dz1dz2e−iqzz1þiQzz2

× h½Jx1ðt; x; y; z1Þ; Jx1ð0; 0; 0; z2Þ�iθðtÞ ð4Þ

is the retarded paramagnetic current-current correlation
function. Here, Jx1ðt; x; y; zÞ is the paramagnetic current
flowing along the x direction and θðtÞ is the Heaviside step
function. The first term on the right-hand side of Eq. (3)
represents the diamagnetic London response, while the
second term is the paramagnetic response from both the
bulk and surface states. The above framework is general
and the magnetic field in the slab is determined once the
current-current correlation function is specified. In what
follows we consider a clean system. Weak nonmagnetic
disorder is not expected to modify the low-temperature
response of the surface response (it is strongly irrelevant
[49]) or of the fully gapped bulk.
Although the low-temperature, T3 dependence of the

penetration depth derived below depends only on the low-
energy dispersion of the 2D Majorana surface fluid, here
we consider a microscopic model for both the bulk and
surface modes of the TSC in order to completely specify the
problem. Solid state models analogous to 3He provide a
fertile playground to study topologically nontrivial super-
conductivity [2,19,24]. “Solid-state 3HeA” would corre-
spond to a Weyl superconductor, which has nodal Weyl
points in the bulk that connect to a surface Majorana arc. In
this work, we consider “solid-state 3HeB” [24,25], with
isotropic p-wave pairing of spin-1=2 electrons, represented
by the following Bogoliubov–de Gennes Hamiltonian

H ¼ 1

2

Z
k
χ†ðkÞĥðkÞχðkÞ; ð5Þ

where

ĥðkÞ ¼ ε̃kσ̂
3 þ Δŝ · kσ̂2; ε̃k ¼

k2

2m
− μ; ð6Þ

and where
R
k ≡

R ½d3k=ð2πÞ3�, ŝ and σ̂, respectively, denote
Pauli matrices acting in the spin and particle-hole spaces,
and χðkÞ≡ ½cðkÞ; ŝ2½c†ð−kÞ�T� is the four-component
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Balian-Werthammer spinor [50]. The latter satisfies the
reality (“Majorana”) condition χ†ðkÞ¼ iχTð−kÞM̂P, where
M̂P ¼ ŝ2σ̂2 defines particle-hole symmetry for ĥðkÞ. In
Eq. (6), μ is the chemical potential and Δ is the super-
conducting order parameter amplitude. For μ > 0 the above
Hamiltonian has winding number ν ¼ 1. The retarded
paramagnetic current-current correlation function due to
the bulk is

Π̃xx
1;RðΩ¼0;q¼0Þ¼−

β

6

�
e
m

�
2
Z
k
k2sech2

�
βEk

2

�
; ð7Þ

where Ek ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ε̃2k þ Δ2k2

q
is the eigenenergy of ĥðkÞ

and β ¼ T−1 is the inverse temperature. In the low-
temperature limit, the bulk paramagnetic response is
exponentially suppressed and the diamagnetic London
response dominates. The London depth is given by

λð0ÞL ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mc2=ð4πe2nÞ

p
, where n is the charge number

density.
To consider the response from the surface, we replace

kz → −i∂z in ĥðkÞ [Eq. (6)] and solve for the Majorana
surface states ψs

kðzÞwith eigenenergies�Δjkj. Here and in
what follows, k ¼ ðkx; kyÞ specifies the momentum trans-
verse to the interface. With hard wall boundary conditions
at z ¼ 0, we obtain surface wave functions of the form [51]

ψs
kðzÞ ¼

e−z=lcohffiffiffiffiffiffiffi
Ns

k

p sin

�
z

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ƛ−2F − l−2coh − k2

q �
jψ0

ki; ð8Þ

where Ns
k is a normalization constant and jψ0

ki is a spin-
momentum-locked spinor in ðspinÞ⊗ ðparticle-holeÞ space.
The two length scales in Eq. (8) are the (reduced) Fermi
wavelength ƛF ≡ 1=

ffiffiffiffiffiffiffiffiffi
2mμ

p
and the coherence length

lcoh ≡ 1=mΔ.
We can see how the magnetic field couples to the surface

fluid by incorporating a vector potential A into Eq. (5),
and then projecting onto the low-energy surface states.
The result is

Hs ¼
Z
r

�
1

2
η†ðrÞ½−iΔðŝ ∧ ∇Þ�ηðrÞ − 1

c
A · J

�
; ð9Þ

where η ¼ ηs is the two-component surface Majorana
fermion operator (s ∈ f↑;↓g), ŝ ∧ ∇≡ ŝ1∂y − ŝ2∂x, and
the surface paramagnetic current operator

JðrÞ ¼ e
4m

η†ðrÞi∇↔ηðrÞ: ð10Þ

Here r ¼ ðx; yÞ and ∇
↔ ≡ ∇⃗ − ∇⃖. Equation (9) assumes that

the field BðzÞ and the vector potential AðzÞ (in London
gauge) both reside in the (x; y) plane. Zeeman coupling to a
nonzero component Bz would induce a Majorana mass,

gapping out the surface fluid [1], but this is prevented by
bulk Meissner screening. On the other hand, a very strong
in-plane field Ax;y could “overtilt” the surface Majorana
cone, creating a surface Fermi pocket. The latter should be
included in the diamagnetic current [52], but we exclude
this situation here by restricting to linear response.
In the low-temperature limit, the paramagnetic current-

current correlation function due to the surface state fluid
evaluates to [51]

Π̃xx
1;R;s;sð0; 0; 0; qz;−QzÞ

≃ −C
�
e
m

�
2 ðkBTÞ3

Δ4
Θð0; qzÞΘð0;−QzÞ; ð11Þ

C≡ ½32ζð3Þ=ð23πÞ�, ζðzÞ is the Riemann Zeta function, and
where

Θðk; qzÞ≡
Z

∞

0

dze−iqzzψ s†
k ðzÞψ s

kðzÞ ð12Þ

is the Fourier transformed probability density of the
surface states along the z direction. Unlike the paramag-
netic response from the bulk, the one from the surface
[Eq. (11)] has a nontrivial T3 power-law dependence at low
temperature. Two factors of temperature arise from the
form of the paramagnetic current operator (a derivative) in
Eq. (10), while the third stems from the surface density of
states of the Majorana fluid. One should also consider the
surface-bulk cross terms when evaluating the paramagnetic
current-current correlator appearing in Eq. (3). However,
these cross terms exhibit higher-power temperature-
dependence at low T, and are thus subleading [51]. We
neglect these surface-bulk contributions in the following.
Results.—Taking only the diamagnetic and surface para-

magnetic responses into account, which is valid at low
temperature as discussed above, we can formally invert the
integral equation Eq. (3) and solve for the vector potential
(and hence the magnetic field) profile inside the slab.
To leading order in temperature, the final result is [51]

ByðzÞ ¼ B0fe−z=λ
ð0Þ
L − ϱðTÞ½∂zGðzÞ�Gð0Þg; ð13Þ

where

ϱðTÞ≡ ½2433ζð3Þπ�ðλð0ÞL Þ6l−1cohƛ−4F t3 ð14Þ

is a temperature-dependent length, with t≡ kBT=ΔkF
being the dimensionless temperature. Here, ΔkF is the
energy gap of the p-wave TSC. In Eq. (13), the function
GðzÞ is a temperature-independent, real-valued function
encoding the convolution of the bulk and surface responses.
It is a dimensionless function only of z and of the three

lengths fƛF; λð0ÞL ; lcohg. GðzÞ emerges when we invert the

PHYSICAL REVIEW LETTERS 124, 067001 (2020)

067001-3



integral equation and Fourier transform the quantities back
to real space [51].
The first term in Eq. (13) describes the Meissner

screening due to the diamagnetic London response, while
the second term is the correction due to the Majorana
surface fluid. The correction term depends on the length
ϱðTÞ that encodes the T3 dependence, while its spatial
dependence is captured by GðzÞ. The function GðzÞ decays
exponentially for large z; its spatial extent is governed by

the maximum of fλð0ÞL ; lcoh=2g, assuming that ƛF is the
shortest scale. This leads to different qualitative type I
and II behaviors. Nevertheless, to characterize the overall
spatial extent of the magnetic field, we can define the
effective penetration depth of the system via [43]

λðTÞ≡ 1

B0

Z
∞

0

dzByðzÞ ¼ λð0ÞL þ ϱðTÞ½Gð0Þ�2: ð15Þ

The second term in Eq. (15) is the change of the penetration
depth due to the surface states. This term is always positive,
meaning that the magnetic field can penetrate deeper into
the slab for any T > 0, due to the surface Majorana fluid. It
is instructive to roughly estimate the order of magnitude for
such correction. For CuxBi2Se3, which is in the extreme
type II regime, we substitute typical experimental data

lcoh ∼ 10 nm, ƛF ∼ 1 nm, and λð0ÞL ∼ 1 μm [33,53] to

obtain δλðTÞ ∼ 0.1λð0ÞL t3.
The two physical quantities ByðzÞ and λðTÞ we focus on

inherit the T3 dependence from the surface current-current
correlation function [Eq. (11)]. Similar power-law-depend-
ence is observed in bulk nodal superconductors. In contrast
to those systems, the model we considered is fully gapped
in the bulk, and thus the Majorana surface states are
responsible for the gapless excitations.
Although the exact expression for GðzÞ is complicated

[51], it takes relatively simple forms in the strong type-I and

type-II limits. For a type-I TSC (lcoh ≫ λð0ÞL ),

GIðzÞ ≃
ƛ2F

2ðλð0ÞL Þ2½4ðλð0ÞL Þ2 þ ƛ2F�

�
−ðλð0ÞL Þ2e−z=λð0ÞL

þ
�
2ðλð0ÞL Þ2 þ ƛ2Fsin

2

�
z
ƛF

��
e−2z=lcoh

�
: ð16Þ

Since the coherence length sets the depth of the surface
fluid [Eq. (8)], the latter allows a much deeper penetration
of the field in the type-I limit than the bulk London depth.
The slower decay is modulated by a Friedel oscillation.
Representative field profiles are shown in Fig. 2(a).

For a type-II TSC (lcoh ≪ λð0ÞL ),

GIIðzÞ ≃
ƛ2Flcoh

16ðλð0ÞL Þ4
½λð0ÞL e−z=λ

ð0Þ
L − lcohe−2z=lcoh �: ð17Þ

In this case the Friedel oscillating terms are subleading,
and can be neglected. Note that the first term in Eq. (17)
dominates the second. In this case the spatial field
penetration is governed by the London depth, but the
correction in Eqs. (13) and (17) effectively enhances the
field amplitude. Representative field profiles are indi-
cated in Fig. 2(b).
Conclusion.—Our calculations suggest an alternative way

to search for Majorana surface states in TSCs by measuring
the change in the penetration depth δλðTÞ. ARPES is often
employed as the key tool to detect smoking gun signatures
of topology in quantum materials. Unfortunately, TSC
candidates typically have a small gap, making surface
states difficult for ARPES to resolve [28]. A necessary,
but not sufficient condition for the existence of a gapless
Majorana surface fluid can be the signature power-law
dependence δλðTÞ ∼ T3. This can be probed by means of
tunnel-diode oscillator techniques [39–42]. While δλðTÞ is

(a)

(b)

FIG. 2. Plot of the magnetic field profile inside the topological
superconductor (TSC) at different temperatures in the (a) type-I

case with λð0ÞL ¼ 1, lcoh ¼ 10, and ƛF ¼ 0.5, and (b) type-II case

with λð0ÞL ¼ 30, lcoh ¼ 8, and ƛF ¼ 2. Here ƛF ¼ 1=
ffiffiffiffiffiffiffiffiffi
2mμ

p
is the

reduced Fermi wavelength, lcoh ¼ 1=mΔ is the coherence length,

and λð0ÞL is the London depth. The blue curves (at t ¼ 0) represent
the diamagnetic London response. The dimensionless temper-
ature t≡ kBT=ΔkF, where ΔkF is the p-wave TSC energy gap.
As temperature increases, the response from the surface becomes
more pronounced. For type I (a), the correction from the surface
exhibits Friedel oscillations and penetrates much deeper than the
London depth. For type II (b), the strongest modulation due to the
surface fluid appears close to the surface.
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exponentially suppressed in conventional, topologically
trivial superconductors, a power law δλðTÞ ∼ Tα is also
expected in superconductors with nodal bulk excitations,
where α depends on whether the nodes are points or lines
[43,54]. For example, a power law with α ¼ 1 has been
observed in high-Tc d-wave superconductors [46].
One way to distinguish the origin of a penetration-depth

power law (Majorana surface states versus bulk nodes) is
via a specific-heat measurement versus temperature. The
specific heat due to the 2D surface of a fully gapped 3D
TSC is negligible. In addition to δλðTÞ ∼ Tα, a TSC with a
fully gapped bulk (nodal superconductor) should therefore
demonstrate exponential suppression (power-law depend-
ence) in specific heat [54].
The superconducting doped topological insulators

ðCu;NbÞxBi2Se3 [39,40,53] and the half-Heusler com-
pound YPtBi [41,55] are all strongly type II. Power-law
dependence of λðTÞ was observed in NbxBi2Se3 [39,40],
YPtBi [41], and in YPdBi and TbPdBi [42]. It would
be interesting to assess whether any of these could be
attributed to the presence of Majorana surface states. In
particular, it is worthwhile to note that while specific-heat
measurements suggest a fully gapped bulk in CuxBi2Se3
and NixBi2Se3 [31,32], penetration depth data for
NixBi2Se3 shows a power-law dependence [39,40]. In
the case of half-Heusler compounds such as YPtBi, it has
been suggested that optical-phonon-mediated pairing
could favor a fully gapped TSC state with winding
number ν ¼ 3 [56], and this should induce novel,
cubic-dispersing Majorana surface fermions [45,57]. In
this case, we would expect a very slow δλðTÞ ∼ T1=3

dependence for a clean, cubically dispersing Majorana
surface fluid. However, the results due to surface states
with ν ≥ 3 might be strongly modified by quenched
disorder [45,58].
In this Letter, calculations were performed for a clean

system. On one hand, low-energy Majorana surface states
with winding number ν ¼ 1 are not affected by non-
magnetic impurities [49,58]; weak nonmagnetic disorder
should therefore not alter the cubic power law δλðTÞ ∼ T3

predicted here as T → 0. The power can possibly be
modified by strong (resonant) impurity scattering [46].
On the other hand, magnetic impurities can strongly
perturb the surface states, and even gap them out.
Moreover, magnetic impurities may independently induce
power-law dependence in δλðTÞ, by altering the magnetic
permeability [46,47].
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